Complex Analysis: Integral of 1/(x^4+1) using Contour Integration

  Рет қаралды 44,838

qncubed3

qncubed3

Күн бұрын

Пікірлер: 57
@ozzyfromspace
@ozzyfromspace 4 жыл бұрын
I love mathematicians 😭❤️💯🙌🏽 That was mesmerizing to watch, mate. Thank you! I’m looking for as many examples of contour integration as possible, and your playlist is a massive help. Greetings from the US 🎊🥳
@qncubed3
@qncubed3 4 жыл бұрын
Thanks! Glad you're finding the videos helpful 👍
@yupengxue9139
@yupengxue9139 Жыл бұрын
Thank you so much! Your explanation is so clear! I love your one-by-one steps!
@j.k.priyadharshini9753
@j.k.priyadharshini9753 2 жыл бұрын
that was like magic! thanks for your clear explanation sir...!!!
@user-wu8yq1rb9t
@user-wu8yq1rb9t 3 жыл бұрын
It's answer just remembered me the Euler Reflection Formula! Thank you so much dear *QN³*
@DargiShameer
@DargiShameer 4 жыл бұрын
Wow what an amazing explanation 😍😍😍😍😍😍😍😍😍😍😍
@prabalbaishya6179
@prabalbaishya6179 2 жыл бұрын
A more generalised version for the integral 1/(x^n+1) for x>0 will be Θ/sinΘ. Where Θ=π/n. For even n we can extended our result to the entire real axis and the result becomes 2Θ/sinΘ, for odd n however, the integral makes sense only for x>0 as there is a pole at x=-1.
@dsllvv
@dsllvv Жыл бұрын
Cool!
@mohamedmouh3949
@mohamedmouh3949 Жыл бұрын
thanks, I discovered with you a simpler method
@themafia33
@themafia33 2 жыл бұрын
hi, how can i solve x^8+1 with the same method? i have to do 4 residues or can samplify something? thanks
@qncubed3
@qncubed3 2 жыл бұрын
A more efficient method is integrating over a sector since you'll only need to evaluate one residue. I use this in my video evaluating the integral of 1/(x^n+1) from 0 to infinity
@OleJoe
@OleJoe 3 жыл бұрын
I think you might have make a slight mistake in your problem. When you rotated by multiplying and dividing by "i" (pi/2), the "i" in the denominator should cancel the "i" in the (2pi)i part in the numerator. You should get cos(pi/4), not sin(pi/4). Since cos(pi/4) = sin(pi/4), you got the correct answer. Of course I could be all wrong, but it's worth checking out.
@qncubed3
@qncubed3 3 жыл бұрын
Not sure if I can spot the error you mentioned... Do you mind giving me an exact timestamp?
@OleJoe
@OleJoe 3 жыл бұрын
@@qncubed3 At about 9:10. Looks like you should have multiplied top and bottom by "i". e^(pi/2)i. You would end up with pi times cos(pi/4) and that gives pi/sqrt(2).
@qncubed3
@qncubed3 3 жыл бұрын
@@OleJoe We cannot end up with cosine, as one of the exponentials will need to have a negative. So we can only produce the sine function.
@OleJoe
@OleJoe 3 жыл бұрын
@@qncubed3 I ended up with e^ (-3/4 ipi) and e^(-9/4 ipi). -9pi/4 = -8pi/4 - pi/4. -8pi/4 = -2pi, a complete rotation, so we are left with -pi/4 and -3pi/4. Ok, now multiply top and bottom by e^(ipi/2). We get pi/2 - pi/4 = pi/4, and pi/2 - 3pi/4 = - pi/4. So we get e^(ipi/4) and e^(-ipi/4). So we get (2pi i / 4i) ( e^(i pi/4) + e^(-i pi/4) ) This simplifies down to cos(pi/4).
@qncubed3
@qncubed3 3 жыл бұрын
@@OleJoe Yes, that is an equivalent way to calculate it. You simply used an angle of pi/4, whereas I used 3pi/4. For your angle, you would indeed end up with a cosine function. Recall the trig identity sin(x)=cos(x-pi/2) which is basically what's being used here since you multiplied by e^(i*pi/2). Hence my answer = sin(3pi/4) = cos(3pi/4-pi/2) = cos(pi/4) = your answer.
@jelicam.1370
@jelicam.1370 5 жыл бұрын
What if we had x^4 + a^4 instead of x^4 + 1 ? Could you help me about it? Thank you
@qncubed3
@qncubed3 5 жыл бұрын
What you can do is factor out a^4 on the denominator, this will leave you with a^4((x/a)^4+1) Taking 1/a^4 out from the integral as a constant, you will be left with the integral of 1/((x/a)^4+1) dx From here, you can do a simple substitution: u=x/a => du=dx/a => dx=a*du Note that bounds will not be changed. Substituting back in you will get 1/a^3*int(1/(u^4+1))dx, the same integral in the video. This evaluates to 1/a^3 * pi*sqrt(2)/2 = pi*sqrt(2)/(2a^3) Hope that helps :)
@jelicam.1370
@jelicam.1370 5 жыл бұрын
@qncubed3 , you helped me a lot ! I actually got a problem such as x^3 * sinx / x^4 + a^4 , following your explanation I hope I got the right solution, it's pi * sqr(2) / 2i Thank you very much for your additional help, kindness and time.
@qncubed3
@qncubed3 4 жыл бұрын
@@dewman7477 I used L'hopital's rule as directly subbing in the pole would result in 0/0, however we would like some value for the limit. To do this, we differentiate the top and bottom separately with respects to z. As the numerator is a linear function with a leading coefficient of 1, the derivative becomes 1.
@qncubed3
@qncubed3 4 жыл бұрын
@@dewman7477 Our initial interval of integration was from -infinity to infinity on the real axis. Hence, we choose a contour which also passes through the real axis. Enclosing all 4 poles would result in more residues to be calculated, and would be quite challenging to construct a suitable contour.
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
Super Like 👍 Thank you dear *QN³* 💓
@michaelbaum6796
@michaelbaum6796 Жыл бұрын
Thanks a lot. I enjoyed the video - great👍
@absurdite657
@absurdite657 3 жыл бұрын
I was trying to do this by factoring the denominator and finding residues at simple poles for z=i(i )**1/2 and z= i,but the solution is coming to be a complex 😥. Why we have to put it in exponential form?
@jacobwilson8275
@jacobwilson8275 12 күн бұрын
You dont have to but it makes it easier to calculate
@AnAllAroundPlayerMaker
@AnAllAroundPlayerMaker Жыл бұрын
Thanks for the explanation.
@active285
@active285 Жыл бұрын
I don't see that you need a long calculation involving the reverse triangle inequality. If you know that |z| ≤ R on \Gamma, then just use the triangle inequality + this assumption in the denominator to deduce directly that |1 / (z^4 + 1)| ≤ 1 / ( |z|^4 + 1) ≤ 1 / (R^4 + 1).
@dsllvv
@dsllvv Жыл бұрын
You should be careful when you apply the triangle inequality: since |z^4 + 1| ≤ R^4 + 1, you have that 1 / |z^4 + 1| ≥ 1 / (R^4 + 1) which doesn't tell you much when R tends to infinity. The idea is that you need a lower bound on |z^4 + 1| that depends on R. In that case, be considering the inequality with the reciprocals, you get 1 / |z^4 + 1| ≤ (something that goes to 0 as R approaches infinity).
@miracles7352
@miracles7352 3 жыл бұрын
Explanation is so nice
@nizogos
@nizogos 8 ай бұрын
Can't you say that 1/abs(z^4+1)
@qncubed3
@qncubed3 8 ай бұрын
This only works if z^4 is positive. If z^4=-2 for example then you would get 1
@willyh.r.1216
@willyh.r.1216 Жыл бұрын
Good refresher.
@thehardlife5588
@thehardlife5588 3 жыл бұрын
Sorry i dont get the mathematics behind the arc length, integral of dz =piR, can you explain it mathematically, because dz =Ri(e^it)dt, and when i integrated it from pi to zero equals R
@qncubed3
@qncubed3 3 жыл бұрын
I made an error, there should have been an absolute value around the dz when I first applied the triangle inequality. So int_Gamma |dz| = int_[0,pi] R dt = pi*R
@thehardlife5588
@thehardlife5588 3 жыл бұрын
@@qncubed3 ok thanks that makes sense
@CliveJohnson12
@CliveJohnson12 4 жыл бұрын
Why was it necessary to convert the singularities to polar form? Would this still work if you hadn't?
@qncubed3
@qncubed3 4 жыл бұрын
Yes, you would still get the same result. Polar form is easier to work with when you raise complex numbers to a power. (Otherwise the algebra can get messy)
@CliveJohnson12
@CliveJohnson12 4 жыл бұрын
@@qncubed3 thank you! Could you possibly do a video on branch cuts and the complex log?
@qncubed3
@qncubed3 4 жыл бұрын
Currently planning videos on integration with branch cuts :)
@CliveJohnson12
@CliveJohnson12 4 жыл бұрын
@@qncubed3 i would love that- i have an exam on Saturday and im extremely worried. I'm just glad I found you channel.
@christianjourneytv1003
@christianjourneytv1003 Жыл бұрын
You're the best
@stayclashy3433
@stayclashy3433 5 ай бұрын
Thanks
@crisgetcrucified6972
@crisgetcrucified6972 2 жыл бұрын
8:33
@robertmikhailguzmanarellan8176
@robertmikhailguzmanarellan8176 2 жыл бұрын
Muchas Gracias ( Thank's a lot)
@YossiSirote
@YossiSirote Жыл бұрын
Should have used Jordan’s lemma
@miracles7352
@miracles7352 3 жыл бұрын
Super class
@siddhant877
@siddhant877 4 жыл бұрын
thank you
@killua9369
@killua9369 3 жыл бұрын
Can I say that; I love you? ❤
@Caturiya
@Caturiya 5 ай бұрын
mit Partialbruchzerlegung oder Betafunktion kzbin.info/www/bejne/nIW3kJ18rpWHm9k
@ashishraje5712
@ashishraje5712 4 ай бұрын
Intoxicating mathematics there is no better intoxicant maths, sincerely yrs
@hajsaifi3842
@hajsaifi3842 2 жыл бұрын
Bêta fonction mieux
@mihaipuiu6231
@mihaipuiu6231 Жыл бұрын
For sir Math "qncubed 3": 1. You are very smart 2. Do you explain this problem only to Euler,...Gauss, Green? etc., or NOT for all people who wish to learn and understand your solution? In this case, I have to avoid you, or 3. Maybe you MUST change your CARIOCAS with a PEN black color to understand your writing, which is horrible. Take my idea as something friendly and useful for both. Sorry about that.
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.
How to have fun with a child 🤣 Food wrap frame! #shorts
0:21
BadaBOOM!
Рет қаралды 17 МЛН
УЛИЧНЫЕ МУЗЫКАНТЫ В СОЧИ 🤘🏻
0:33
РОК ЗАВОД
Рет қаралды 7 МЛН
Integral of 1/(x^2+1) from -inf to inf, Contour Integral
19:50
blackpenredpen
Рет қаралды 51 М.
Complex Analysis: Integral of 1/(x^n+1) feat. pizza contour
36:33
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 150 М.
A breathtaking integration result!
15:56
Maths 505
Рет қаралды 12 М.
Complex Analysis: A Trigonometric Integral
16:46
qncubed3
Рет қаралды 10 М.
Integral of 1/(x^6+1) without partial fractions!
13:01
blackpenredpen
Рет қаралды 393 М.
What does a complex function look like? #SoME3
20:38
mathematimpa
Рет қаралды 126 М.
«Жат бауыр» телехикаясы І 30 - бөлім | Соңғы бөлім
52:59
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 340 М.