Computer Vision | Lecture 7 | Image Classification Metrics and Overfitting

  Рет қаралды 155

Byte Size ML

Byte Size ML

Күн бұрын

Пікірлер: 2
@rohitdhankar360
@rohitdhankar360 2 жыл бұрын
09:00 - Linear Model with an example of an Non Linear Feature 12:00 - a new Feature Engineered - independent variable - h(x) 15:00 - SIFT features 16:00 - Deep learning algorithms - learning to feature engineer . 20:30 - Given data is Linear Separable , Logistic Regression ( Classification ) is a good choice . 25:30 - Logistic Regression --> is a ONE CELL Neural Network - its just ONE NEURON 26:30 - Loss Function --> Optimizing for w(hat) - by picking the RIGHT w(hat) , we ensure that the Y(hat)i is close to most Yi 28:40 - ENTROPY - both the classes - 0 and 1 have equal probability - 0.5 ( 50%) and thus its the Highest Uncertaintiy or Hihghest Entropy
@bytesizeml119
@bytesizeml119 2 жыл бұрын
Thanks for the additional time stamps
MIT Introduction to Deep Learning | 6.S191
1:09:58
Alexander Amini
Рет қаралды 843 М.
Computer Vision | CNN Introduction | Lecture 10
1:28:18
Byte Size ML
Рет қаралды 180
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Air Sigma Girl #sigma
0:32
Jin and Hattie
Рет қаралды 45 МЛН
Lecture 3 | LLM 2025 Lectures
1:08:44
Byte Size ML
Рет қаралды 20
All Machine Learning Concepts Explained in 22 Minutes
22:22
Infinite Codes
Рет қаралды 73 М.
How might LLMs store facts | DL7
22:43
3Blue1Brown
Рет қаралды 980 М.
Lecture 2 | Image Classification
59:32
Stanford University School of Engineering
Рет қаралды 946 М.
Lecture 3 | Loss Functions and Optimization
1:14:40
Stanford University School of Engineering
Рет қаралды 902 М.
Build a Deep CNN Image Classifier with ANY Images
1:25:05
Nicholas Renotte
Рет қаралды 658 М.
Hilarious FAKE TONGUE Prank by WEDNESDAY😏🖤
0:39
La La Life Shorts
Рет қаралды 44 МЛН