Computer Vision on NPU - all you need to know

  Рет қаралды 2,941

Anton Maltsev

Anton Maltsev

Күн бұрын

Пікірлер: 15
@wolpumba4099
@wolpumba4099 7 ай бұрын
*Summary: Running Computer Vision Models on NPUs* What is an NPU? (0:37) - NPUs are specialized silicon chips optimized for running neural network computations, especially matrix multiplications. - Unlike CPUs and GPUs, they can't run general-purpose programs, focusing purely on neural network inference. - Many different names exist for these chips, including LPU, TPU, VPU, etc., but they share the core idea of accelerating neural network calculations. Why Use NPUs? (2:29) - Main advantages: Reduced power consumption, lower device cost, potential for significant speedups compared to CPU/GPU for specific tasks. - Main disadvantages: Increased development complexity, limited choice of neural network architectures, more intricate deployment and testing processes. Challenges of working with NPUs: - Diverse Ecosystem: (7:42) A vast landscape of vendors, frameworks, and boards makes finding a perfect solution difficult. Each vendor typically offers its own custom framework. - Model Export and Compatibility: (10:09) - Requires careful preparation, including specific patches and quantization, to adapt your model to the target NPU architecture. - Non-maximum suppression (NMS) (18:59) often needs to be handled outside the NPU, requiring separate code or fallback mechanisms. - Memory Limitations: (20:54) - Limited memory size on NPUs restricts model size and complexity. - Memory access speed and structure significantly impact performance. - Preprocessing: (22:46) May need to be performed separately on the CPU, GPU, or dedicated accelerator depending on the NPU and its capabilities. - Transformer Support: (23:58) Limited or non-existent on many NPUs, often requiring model adjustments or alternative convolutional architectures. - Layer Support: (25:23) - Advertised layer support can be misleading due to merged layers or limited functionalities. - Always verify compatibility and performance for your specific model layers. - Quantization: (27:33) - Essential for many NPUs to reduce model size and accelerate inference. - Can be complex and lead to accuracy degradation, requiring careful fine-tuning and evaluation. - Benchmarks: (30:30) - Often don't reflect real-world performance. - Always test on your target hardware and specific model for accurate results. Additional considerations: - CPUs play a vital role in data transfer, image decoding, preprocessing, and fallback mechanisms, impacting overall performance (36:43). - C++ is the dominant language for inference on most NPUs, while Python prevails in model training and export (38:45). - Training on NPUs is possible but involves a separate class of processors and different considerations (39:51). i used gemini 1.5 pro
@zorqis
@zorqis 3 ай бұрын
Good summary and useful for passers by. However, the video contains some small remarks that contain a lot of useful information, so I still recommend watching the whole video.
@boltvalley3076
@boltvalley3076 Ай бұрын
Thank you.
@shakhizatnurgaliyev9355
@shakhizatnurgaliyev9355 7 ай бұрын
good one!
@diegosantos9757
@diegosantos9757 7 ай бұрын
Dear, tks for the content. Which sbc would you recommend for somente just starting with computer vision?
@AntonMaltsev
@AntonMaltsev 7 ай бұрын
Depends on your budget. The smooth experience is with Jetsons or Intel-based boards. In the case of a low budget, I recommend some RockChip-based solutions.
@diegosantos9757
@diegosantos9757 7 ай бұрын
Tks mate, I will check the rockchip!
@andreyl2705
@andreyl2705 7 ай бұрын
awesome)
@עינהרע
@עינהרע 7 ай бұрын
You gonna test the new Hailo GenAI m.2 board?
@AntonMaltsev
@AntonMaltsev 7 ай бұрын
It's difficult to buy one piece for home use, and none of my friends or colleagues are using it right now, so I have no chance to borrow. So, it's not in the plans. But if there is a chance, I will try.
@AntonMaltsev
@AntonMaltsev 7 ай бұрын
But the next video will probably be about my experience of using Hailo in production (more about framework and Hailo-8)
@ДенисСлепцов-ь6п
@ДенисСлепцов-ь6п 7 ай бұрын
Здравствуйте, давно слежу за Вашим творчеством. Прошу Вас, продолжайте в том же духе! Очень интересно. Могли бы Вы сказать, доводилось ли Вам размещать нейронную сеть на FPGA ? Если да, то могли бы Вы, пожалуйста, поделиться своим опытом ?
@AntonMaltsev
@AntonMaltsev 7 ай бұрын
Добрый день, спасибо! Пару раз хотел потестить xilinx kria, но меня каждый раз отговаривали со словами что это полный хлам. В целом FPGA дефолтовый не то что хорошо ложиться на архитектуру сетей. Так что не очень понятен смысл даже...
@ДенисСлепцов-ь6п
@ДенисСлепцов-ь6п 7 ай бұрын
@@AntonMaltsev Понял, спасибо
@____________________________.x
@____________________________.x 7 ай бұрын
Your jump cuts make this confusing
Do you really need a GPU or NPU for AI?
18:20
The Register
Рет қаралды 2,1 М.
Choosing AI Edge board in 2024 / 2025
53:32
Anton Maltsev
Рет қаралды 1,2 М.
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН
ADDC 2019 - Dan Abdinoor:  The NPU Revolution
46:17
App Design & Development Conference - ADDC
Рет қаралды 4,2 М.
Migrating from SQL Scripts to DataForge - Case Study
28:14
Copilot+ PCs - Do you need an NPU? Microsoft Says "Yes", I Say "No"
19:28
AI’s Hardware Problem
16:47
Asianometry
Рет қаралды 636 М.
Do we really need NPUs now?
15:30
TechAltar
Рет қаралды 855 М.
How Computers Work, Compilation Video of Basics Explained
56:20
Basics Explained, H3Vtux
Рет қаралды 457 М.
Depth estimation. From the theory to the Edge.
17:21
Anton Maltsev
Рет қаралды 662
LLMs for RockChip. Guide for RKLLM. RK3588 vs RK3576 comparision
13:35
Counter-Strike 2 - Новый кс. Cтарый я
13:10
Marmok
Рет қаралды 2,8 МЛН