Easily the hardest 'Medium' I have ever seen. If you didn't get this one, don't be discouraged. Just get really good at recursive thinking and come back to it later.
@theannaharbourАй бұрын
Thank you, sir haha
@THEAVISTER2 жыл бұрын
Thanks for all your help NeetCode and all the effort you put into teaching concepts thoroughly!!
@symbol7672 жыл бұрын
This is the type of problem you give someone you don't want to hire...
@noelcovarrubias7490 Жыл бұрын
ahahah right? It's doable but very tricky
@ayushpatel5463 Жыл бұрын
It took my 2 days to solve 😂😂
@techlogical805911 ай бұрын
Lol 😂
@LeetCodeMastery-y9d10 ай бұрын
Totaly
@doc94488 ай бұрын
@@ayushpatel5463 You're supposed to cheat and learn, not spend 2 days working on pre-solved problems
@theanguyen10152 жыл бұрын
Thank you. This is very easy to understand. You saved me from sitting at the computer for 5 hours more.
@darhkz39002 жыл бұрын
4:45. The 2nd value in preorder is not guaranteed to be the left node because it might not have a left node. What is guaranteed is in preorder = [root, [leftSubTreeValues], [rightSubTreeValues]]. A node's left subtree values come before its right subtree values in preorder traversal if looking at it in array form.
@cmelch2 жыл бұрын
I also noticed this when he said that. In the example tree, if we take out the 9, the root of 3 has just a right sub tree. What we do know is that any value to the right of a node in preorder is a child. We just do not know which one.
@ThePacemaker45 Жыл бұрын
that wasn't relevant to his solution so I guess he just misspoke there. Good catch though I wondered the same thing.
@sameerkrbhardwaj7439 Жыл бұрын
if we don't have 9 then in preorder list after one recursion the list will be empty and hence we will get null value for left subtree
@214GNR22 күн бұрын
Lot of people are saying it's a hard problem and I agree. However, with strong foundation in divid-and-conquer pattern (merge and quick sort helps) AND dfs tree traversal (inorder, preorder, postorder), this problem becomes very intuitive and the different approaches to the solution makes a LOT of sense!
@pekarna2 жыл бұрын
Hi, this is stated MEDIUM but I think it's quite HARD. Anyway, I have an improvement: The lookup of the "pivot" in the Inorder array makes this order of magnitude more complex. The worst case around O(n^2). I took an approach of keeping a stack, whose top tells me if I should close the current subtree. It is O(n). The code as it is is not pleasing to look at, but works: fun buildTree(preorder: IntArray, inorder: IntArray): TreeNode? { if (preorder.isEmpty()) return null var curI = 0 val root = TreeNode(preorder[0]) val stack = Stack().apply { this.add(preorder[0]) } var curP = 1 fun hasNext() = curI < inorder.size && curP < preorder.size fun nextInorder() = if (curI >= inorder.size) null else inorder[curI] fun stackPeekOrNull() = if (stack.isEmpty()) null else stack.peek() fun dfs(curNode: TreeNode) { if (hasNext() && nextInorder() != curNode.`val`) { curNode.left = TreeNode(preorder[curP++]) stack.push(curNode.left!!.`val`) dfs(curNode.left!!) } if (nextInorder() == curNode.`val`) { curI++ stack.pop() if (curI >= inorder.size) return } if (nextInorder() == stackPeekOrNull()) { return } if (nextInorder() != curNode.`val` && nextInorder() != stackPeekOrNull()) { curNode.right = TreeNode(preorder[curP++]) stack.push(curNode.right!!.`val`) dfs(curNode.right!!) } } dfs(root) return root }
@sucraloss Жыл бұрын
Was thinking the same on the difficulty level, this felt like a massive ramp-up compared to the mediums I was doing
@tranpaul4550 Жыл бұрын
agree with you, this one is definitely Hard that requires some tricks and DFS configuration. Thats why I dont trust Leetcode medium and hard labels after a while of grinding.
@blitzspirit Жыл бұрын
Storing the index for mid in the hash map would be more efficient IMO. That would lead to time complexity O(n) otherwise it's O(n^2). Adding a section of time complexity is what's missing in most videos. IFF possible, please create time complexity videos for Neet75 and add the pertinent links in the description. That would be super helpful for people who are only using these videos to learn about the right approach to solving these problems. ``` # Definition for a binary tree node. # class TreeNode: # def __init__(self, val=0, left=None, right=None): # self.val = val # self.left = left # self.right = right class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: # takes the left and right bound of inorder, logic --> any given inorder index bisects the tree in left and right subtree def localBuildTree(leftBound, rightBound): nonlocal preOrderListIndex if leftBound > rightBound: return None newRootVal = preorder[preOrderListIndex] newRoot = TreeNode(newRootVal) preOrderListIndex += 1 newRoot.left = localBuildTree(leftBound, inorderIndexFor[newRootVal]-1) newRoot.right = localBuildTree(inorderIndexFor[newRootVal]+1, rightBound) return newRoot inorderIndexFor = dict() for index,element in enumerate(inorder): inorderIndexFor[element] = index preOrderListIndex = 0 return localBuildTree(0, len(preorder)-1) ```
@hypnotic9595 Жыл бұрын
Yes, I like your implementation much better. Using the splice operator, as in his example, will also cost O(n) each time it occurs I think.
@symbol7672 жыл бұрын
To optimize this further from O(N^2) to O(N): - Create a hashset with the keys being all inorder numbers and their indexes. (Ask your interviewer to confirm all inorder values are UNIQUE). Now instead of having to use inorder.index you can do inorderHash[preorder[0]] Now its still O(N^2) because we are slicing the array every time we do recursion. Lets get rid of that. To handle this we will simply reverse our preorder array, so usually we need to access the first index everytime, now we can just pop the end of the array off everytime instead of slicing to get the correct first index everytime. We basically turned our preorder array into a postorder class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorderHash = {}; for i in range(len(inorder)): inorderHash[inorder[i]] = i; preorder.reverse(); return self.build(preorder, inorderHash, 0, len(inorder) - 1); def build(self, postorder, inorderHash, start, end): if start > end: return; postorderNum = postorder.pop(); curIdx = inorderHash[postorderNum]; root = TreeNode(postorderNum); root.left = self.build(postorder, inorderHash, start, curIdx - 1); root.right = self.build(postorder, inorderHash, curIdx + 1, end); return root;
@mprasanth18 Жыл бұрын
Good optimization technique
@illu1na Жыл бұрын
reverse and pop is great technique. But like spaceoddity1567 said, its really not postorder.
@gustavo-yv1gk Жыл бұрын
nice
@ZhouHenry Жыл бұрын
Reversing a preorder array is not equivalent to a postorder array. Other than that, pretty good optimization.
@빡빠기-c6e4 ай бұрын
Don't you also need to adjust the start and end idx since the preorder is reversed?
@tarandeepsingh12883 жыл бұрын
Yo man this is the easiest explanation I found on the internet you gained a sub
@sheexcel71343 жыл бұрын
But the time and space complexity are both O(n^2) because of the inorder.index() function and passing subarrays of preorder/inorder in each stack of the recursion.
@gouthamr82142 жыл бұрын
We can create a hash map and make it a constant time operation
@shriharikulkarni39862 жыл бұрын
@@gouthamr8214 We are passing the sublist at each call, creating hashmap requires O(n) time only right?
@gouthamr82142 жыл бұрын
@@shriharikulkarni3986 creating hashmap will be O(n) but accessing will be a constant time operation
@shriharikulkarni39862 жыл бұрын
@@gouthamr8214 at each step why should we create hashmap if i am only traversing once ? After i travel once that too i return at the first hit itself, i never use that same hashmap again in the code ever.
@gouthamr82142 жыл бұрын
@@shriharikulkarni3986 u just have to create hashmap once
@dansun1173 жыл бұрын
I was also just going through this problem, I really like watching your videos, please keep posting!
@NeetCode3 жыл бұрын
Thanks, much appreciated 😃
@TaqviAbsar7 ай бұрын
This is a really good explanation. Perhaps the best one I’ve seen. Also, an unpopular opinion: it is quite a good problem too as in it ties both of the in-order and pre-order traversal techniques.
@wlcheng3 жыл бұрын
Looking for the video explanation for LeetCode 106 and found this explanation for 105 is very useful too. Thank you so much! :)
@OMFGallusernamesgone2 жыл бұрын
How are you using mid from the inorder subarray to slice the preorder?
@galshufi Жыл бұрын
Notice that mid is equal to the number of nodes on the left tree
@swapnilrao98812 ай бұрын
@@galshufi is this problem supposed to be intuitive even in the slightest manner or am i just stupid. solving BST questions give a reality check often ngl lmao
@leonscander14315 ай бұрын
God damn. I was about to give up, but I solved it. I was trying to come up with a brute force solution and the key moments that helped me during my thought process were: 1. Noticing that the first element in preorder is always a root node. 2. Noticing that everything to the left of the root value in inorder list is a left subtree and everything to the right is a right subtree. 3. Then you just need to figure out how to apply a recursion to above 2 statements to build the left and right subtrees.
@EquinoXReZАй бұрын
Step 3 is where I struggled
@abhineetsharma15613 жыл бұрын
Thanks for the explanation, it was really helpful. You are the Mr.Miyagi of Competitive Coding. P.S: Please keep posting !
@meowmaple3 жыл бұрын
leetcode*, not competitive programming
@mannemsrinivas2685 Жыл бұрын
Instead of mid, If we rename it to leftTreeLength then we can understand the partitions very easily
@gregwhittier5206 Жыл бұрын
I don't think it's explicitly stated here (apologies if it is), but not only is the root the first element of the preorder, but all the left subtree items come before the right subtree which is way taking the first mid items only gets left subtree values. And buildtree recursing in preorder (root, left, right) is necessary. This is my mod to use a hashmap and indexing to get linear time. class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorder_idx_by_val = {inorder[i]:i for i in range(len(inorder))} def _buildTree(pi, pj, ii, ij): if (pi > pj) or (ii > ij): return None node = TreeNode(val=preorder[pi]) mid = inorder_idx_by_val[node.val] node.left = _buildTree(pi+1, pi+(mid-ii), ii, mid-1) node.right = _buildTree(pi+(mid-ii)+1, pj, mid+1, ij) return node return _buildTree(0, len(preorder)-1, 0, len(inorder)-1) Your channel is awesome and thanks for putting all this out there.
@ajvercueil81119 ай бұрын
this is the best code i've seen for this problem, way to go!
@alexanderk5399 Жыл бұрын
I want to thank you soooo much! The visualizations & level of analysis is exactly what I needed to understand the algorithm-level solution. Your videos are the best!
@mashab91293 жыл бұрын
the very best explanation for this problem. thank you!!
@susquon Жыл бұрын
I love the structure of your videos! You do such a good job at explaining the approach and how to go about the problem, that I often am able to figure out the code before you even get to that part. Thanks so much!
@mohamadilhamramadhan6354 Жыл бұрын
My solution beats 98.95% in runtime and 91.32% in memory. It uses stack, use preorder to go down (add left/right node) and inorder to go up: let result = new TreeNode(preorder[0]); let stack = [result]; let current = result; let j = 0; // inorder pointer let addSide = 0; // 0 left, 1 right for (let i = 1; i < preorder.length; i++) { console.log('ADD LEFT', current.val); console.log('stack[stack.length - 1]', stack[stack.length - 1].val); // going up the tree; while (inorder[j] === stack[stack.length - 1].val) { current = stack.pop(); j++; addSide = 1; // if going up then the next add side is right if (stack[stack.length - 1] === undefined) break; } // going down the tree after adding if (addSide === 0) { current.left = new TreeNode(preorder[i]); current = current.left; } else { current.right = new TreeNode(preorder[i]); current = current.right; } stack.push(current); addSide = 0; } return result;
@apriil98227 ай бұрын
There's no way for me to think of this solution. Good explanation, thanks!
@Dust1nPham2 жыл бұрын
Since the first value in preorder is always the root, isn't it also possible to use preorder[1:] as inputs for both left and right instead of using mid to split it?
@khalilkhawaja4909 Жыл бұрын
No, because if there is no left node to the root, then mid would be 0.
@zl74602 жыл бұрын
One issue with this approach (on an edge case): if the tree is nearly vertical (width 1 each level, randomly left or right), then .index would take O(n) time on average and O(n^2) total. This can be avoided in an iterative method w/ hashmap.
@Modupalli454510 ай бұрын
Thanks @NeetCode for everything you are doing. I know your solution is awesome. But, I just tried your subsequent solution (build binary tree from in-order and post-order) and try to implement this problem and it looks like it is working as expected and efficient too def buildTree_nc(self, preorder: list[int], inorder: list[int]) -> Optional[TreeNode]: map_inorder = { v : i for i,v in enumerate(inorder)} def helper(l, r): if l > r: return None root = TreeNode(preorder.pop(0)) idx = map_inorder[root.val] if idx - l > 0: root.left = helper(l, idx - 1) if r - idx > 0: root.right = helper(idx + 1, r) return root return helper(0, len (preorder)-1)
@ishtiaqueahmed5925 Жыл бұрын
thank you so much. Just used this for my final exam!!
@sagarverma86811 күн бұрын
Time: O(n) Solution Using hashmap and No slicing is done, just passing index boundaries (pointers) class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: self.inOrderMap = {} for i,val in enumerate(inorder): self.inOrderMap[val] = i def dfs(preStart, preEnd, inStart, inEnd): if(preStart > preEnd or inStart > inEnd): return None root = TreeNode(preorder[preStart]) mid = self.inOrderMap[preorder[preStart]] leftSize = mid - inStart # how many nodes in left subtree root.left = dfs(preStart+1,preStart+leftSize,inStart,mid-1) root.right = dfs(preStart + leftSize + 1,preEnd,mid+1,inEnd) return root return dfs(0,len(preorder)-1,0,len(inorder)-1)
@DenysGarbuz9 ай бұрын
The solution is concise enough. But time and space complexity may be way better. Instead of creating new lists for each subproblem we can use pointers which will represents boundaries (left, right) in main preorder. And also instead of iterating in each subproblem through inorder to get current number index we can create map, which will store indices of each number. We will have space O(n) & time O(n) On leetcode solution with these improvements runs at least 3 times faster.
@ritteshpv21962 жыл бұрын
Python Code | much more efficient solution in time and space | Improvised from neetcode solution | Must read Improvements: 1. Create a hashmap to retrieve index 2. Pass current interval of preorder and inorder instead of slicing class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: def r_build_tree(preorder_left, preorder_right, inorder_left): if preorder_left == preorder_right: return None nonlocal inorder_hash_map inorder_root_index = inorder_hash_map[preorder[preorder_left]] - inorder_left root = TreeNode(preorder[preorder_left]) root.left = r_build_tree(preorder_left + 1, preorder_left + inorder_root_index + 1, inorder_left) root.right = r_build_tree(preorder_left + inorder_root_index + 1, preorder_right, inorder_left + inorder_root_index + 1) return root inorder_hash_map = {} for index, node in enumerate(inorder): inorder_hash_map[node] = index return r_build_tree(0, len(preorder), 0)
@bishalhazarika1352 жыл бұрын
Your code is longer . How it is effiicient wow. It seem more complex
@illu1na Жыл бұрын
Thanks its great. personally, it makes more sense for me to use L, R pointers for inorder rather than preorder as per Neetcode's suggestion. Here is mine, i don't like nonlocal stuffs so i made it into separate function. class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: self.index_map = { val: i for i, val in enumerate(inorder) } return self.build_tree_recur(preorder, inorder, 0, 0, len(inorder) - 1) def build_tree_recur(self, preorder, inorder, preorder_start, inorder_start, inorder_end): if preorder_start >= len(preorder) or inorder_start > inorder_end: return None root = TreeNode(val=preorder[preorder_start]) mid = self.index_map[root.val] root.left = self.build_tree_recur(preorder, inorder, preorder_start + 1, inorder_start, mid - 1) root.right = self.build_tree_recur(preorder, inorder, preorder_start + mid - inorder_start + 1, mid + 1, inorder_end) return root
@airsoftbeast112342 жыл бұрын
Finding the index is O(N) I would allocate a map pointing all the in order values to its index so you can look up indexes in O(1), but at the cost of some space complexity
@mearaftadewos85082 жыл бұрын
nice point: io = {} j = 0 for i in inorder: io[i] = j j += 1 root = Node(preorder[0]) mid = io[preorder[0]]
@JohnnyMetz2 жыл бұрын
But creating the mapping takes O(n), which is the same as .index(), so I don't think this will help.
@airsoftbeast112342 жыл бұрын
@@JohnnyMetz it definitely helps, it’s O(n) preprocessed one time, this is O(N) within every recursive loop
@world1119111 ай бұрын
for the preorder indexing, I prefer to say left_size = mid and then use left_size instead of mid. It makes more sense for my mind - since I feel like mid was used more in the context of inorder (as an index of inorder) rather than preorder. For the inorder indexing, I use mid though, cause it makes sense not to include the midpoint. Ex. ``` root = TreeNode(preorder[0]) mid = inorder.index(root.val) left_size = mid root.left = self.buildTree(preorder[1:1+left_size], inorder[:mid]) root.right = self.buildTree(preorder[1+left_size:], inorder[mid+1:]) ```
@andy__yeyo9 ай бұрын
I was not able to understand indexing of preorder part but this comments got me. Thank you!
@girirajrdx72772 жыл бұрын
@14:49 why should we include the mid index? the left part only include 1 index to mid-1 index right?..the mid is the root node itself
@shrimpo64163 жыл бұрын
LOVE IT! I thought it would be a hard one but you make it so easy!!! I figure out the code just from your drawing explanation, because you explain the concept so clearly!!!
@abdulrehmanamer4252 Жыл бұрын
Woah! A really clear elaboration I have ever heard
@Wuaners4 ай бұрын
Saved my day. Many thanks, genius.
@ajayjaadu422 жыл бұрын
loves from India and thank you sir
@TransformationDiares2 жыл бұрын
Best solution explanation for this problem on internet :D
@abhicasm92372 жыл бұрын
If the interviewer gives you this question, he doesn't want you.
@halahmilksheikh2 жыл бұрын
mid is found from inorder but why can you use it to index elements in preorder? Will the lengths of inorder and preorder be identical throughout the recursions and array splitting?
@OMFGallusernamesgone2 жыл бұрын
im sure his version works, but i just followed his logic from his explanation, slice preorder by the lengths of the inorder subarrays
@div00072 жыл бұрын
Great explanation, my friend. Keep up the good work!
@mudit47132 жыл бұрын
you just made a complicated problem seem f**n easy. Thank you!!
@cici-lx6np2 жыл бұрын
Thank you very much for the videos. They helped me a lot! I wrote down the code for Inorder and Postorder Traversal, based on this video 😀 if len(inorder)==0 or len(postorder)==0: return None tree_len = len(postorder) root = TreeNode(postorder[tree_len -1]) mid = inorder.index(postorder[tree_len -1]) root.left = self.buildTree(inorder[:mid], postorder[0:mid]) root.right = self.buildTree(inorder[mid+1:], postorder[mid:tree_len -1]) return root
@bob_jones2 жыл бұрын
A few things to improve speed or in general: 1) As several people have mentioned, using the index function is inefficient and will search through inorder in linear time until the corresponding value is found. It would be better to build a dictionary and continue to use that (e.g. with a helper function). Alternatively, at least in Java, using an array (list in python) as a map due to the limited input domain is more efficient. 2) Splicing is pretty inefficient as it takes extra time and memory to create the lists. It would be better to create a helper function and use indices.
@abdullahshahid90512 жыл бұрын
Building the dictionary takes linear time too. Also note that index function does less work every recursive call due to the divide and conquer nature of this problem
@bob_jones2 жыл бұрын
@@abdullahshahid9051 That is true. However, as you mentioned, the work happens every recursive call. In the best and average case time complexities, the in-order search will be O(n lg(n)), considering all the recursive calls, and worst case O(n^2). If you modify the method to only have the dictionary built once, then it will be O(n) for best, average, and worst cases, considering all the recursive calls.
@abdullahshahid90512 жыл бұрын
@@bob_jones That's a good point, I didn't think of it that way
@StfuSiriusly Жыл бұрын
if you use a deque you can get O(n) from collections import deque class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: def helper(bound=None): if not inorder or inorder[0] == bound: return None root = TreeNode(preorder.popleft()) root.left = helper(root.val) inorder.popleft() root.right = helper(bound) return root inorder = deque(inorder) preorder = deque(preorder) return helper()
@Han-ve8uh2 ай бұрын
@@StfuSiriusly How did you think up this solution? Other solutions will create their own stack and insert/pop elements from preorder. How did you realize inorder can already be used as a stack? What does bound do? What happens without bound? How did you know inorder[0] == bound is the check to do in base case?
@parthshah15632 жыл бұрын
if not preorder or not inorder: return None # Take the root values of subtrees from queue root_val = preorder.pop(0) root = TreeNode(root_val) # Find that root val's index in inorder list to compute the LEFT and RIGHT ind = inorder.index(root_val) root.left = self.buildTree(preorder, inorder[:ind]) root.right = self.buildTree(preorder, inorder[ind+1:]) return root
@Lukeisun7 Жыл бұрын
LETS GO! This is the first time I completed a problem by myself where it looks identical to yours, that felt good
@brawlboy1382 Жыл бұрын
There is NO WAY you solved it unless it took you like days
@Lukeisun7 Жыл бұрын
@@brawlboy1382 I think it took like an hour and a lot of pen and paper work haha
@Rahul-pr1zr3 жыл бұрын
Good explanation! I couldn't come up with the idea to partition the pre-order array. Is the reason why you're partitioning the pre-order array with the left and right sub-array sizes of the in-order array because in pre-order left sub-tree comes before right sub-tree?
@NeetCode3 жыл бұрын
Yes thats exactly correct.
@vivekshaw20952 жыл бұрын
you dont need to partition it you could just pop(0) the value and then pass preorder in both recursion
@eminence_Shadow Жыл бұрын
I code in Java...but I watch your videos for better explanation...and code it myself...how cool
@eddiej2042 жыл бұрын
I don't really get why we pass `preorder[1:mid+1]` for building the left sub tree🤔
@eddiej2042 жыл бұрын
Ah, I see. Because `mid` from inorder array tells us how many items which will be in the left sub tree. So we count from that. preorder = [400,9,1,2,20,15,17] inorder = [1,9,2,400,15,20,7] mid = 3 (3 is an index when the number is 400) left sub tree will contain [1,9,2] right sub tree will contain [15,20,7] preorder[1:mid+1] = [9,1,2]
@shamilgurban64393 ай бұрын
For people who struggle to understand why he takes until mid in preorder, even though mid comes from inorder: in preorder array elements that is lefter than root in tree has same count with count of elements lefter than mid element in inorder
@antonyndungu55143 жыл бұрын
The solution is very clear and precise thanks.
@nikhilaradhya4088 Жыл бұрын
The code can't be more efficient❤❤
@johnzhang82253 жыл бұрын
Great Explanation, was elated to have found such good help.
@jasmeetsingh54252 жыл бұрын
I got asked this question in my bloomberg interview, and i blew it!
@kickradar33483 жыл бұрын
does the subarray in python add space complexity? As opposed to using start and end pointers?
@alieverbol3 жыл бұрын
Thank you NeetCode so much
@dediprakasa2162 Жыл бұрын
Really nice explanation. Thanks 👍
@WR4TH81012 жыл бұрын
Thanks, G.O.A.T . all time savior
@cmelch2 жыл бұрын
You mentioned that with preorder traversal, the value to the right of another is always the left subtree root. This is not true. In the example tree, if you take away the 9 the root node of 3 has just a right subtree. What we do know with preorder is that any node to the right of another is a child node. We just don't know which one. The solution still works because when we partition the tree we would get an empy list on the left recursive call and return nullptr as our inorder traversal would have the root at the far left of the list and indicating no left children. Just want to clarify this.
@richardnorth18812 жыл бұрын
Yes, agreed. I pretty much came down to the comments because I was thinking the exact same thing.
@abcdabcdeabcdef7 ай бұрын
You should also consider the Time complexity of this solution which is nlogn. Easy to use a map of value:index for inorder to get index position in constant time making the overall time complexity n.
@mohamadilhamramadhan6354 Жыл бұрын
Elegance logic and code implementation. You always surprises me. 💥
@vamsipathapati11222 жыл бұрын
This should be labelled hard🤯
@DarrienGlasser3 жыл бұрын
Neatest coding channel out there 😎
@Rajib3178 ай бұрын
// For java lovers // We basically need to find the things we see in the example picture from the two arrays given we know the value of mid. int[] leftPreorder = Arrays.copyOfRange(preorder, 1, mid + 1); // second parameter is exclusive just like python. int[] leftInorder = Arrays.copyOfRange(inorder, 0, mid); int[] rightPreorder = Arrays.copyOfRange(preorder, mid + 1, preorder.length); int[] rightInorder = Arrays.copyOfRange(inorder, mid + 1, inorder.length); root.left = helper(leftPreorder, leftInorder); root.right = helper(rightPreorder, rightInorder);
@abdifatahmoh2 жыл бұрын
Damn, this Python's slicing is very very powerful. This makes superior to the other programming langauge when it comes to coding interview.
@sathyapraneethchamala9147 Жыл бұрын
true!! struggling with AddressSanitizer: heap-buffer-overflow in c++ from past few hours!!
@peiyurang73923 жыл бұрын
Very nice explanation! Thank you!
@BobbyMully2 жыл бұрын
class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorderDict = {elm:i for i,elm in enumerate(inorder)} # inorderDict[elm] = i for all of inorder def dfs(i, j, length): if length == 0: return None val = preorder[i] k = inorderDict[val] - j node = TreeNode(val=val) node.left = dfs(i+1, j, k) node.right = dfs(i+k+1, j+k+1, length-k-1) return node return dfs(0, 0, len(preorder))
@rahulsbhatt Жыл бұрын
I really liked this solution, but I have one question regarding dividing our preorder list, how did you arrive at the solution of choosing the left half and right half based on a pt you found in inorder list? Did my question made any sense?
@chenpr Жыл бұрын
Since mid is equal to the number of nodes on the left subtree. So we use mid to slice preorder arr because we know that the following 'mid' numbers of nodes after the root should be in left subtree.
@victoriatfarrell Жыл бұрын
Thanks@@chenpr , that was very helpful
@madhubabu47793 жыл бұрын
thanks for making it simple
@navaneethmkrishnan6374 Жыл бұрын
Finding the algorithm is not that hard for this (or at least the pattern). It's writing code for this that is hard. Thanks man!
@chenhaibin20102 жыл бұрын
wow, such a neat solution. following the same thoughts, I was able to crack LC106
@ambujhakhu75313 жыл бұрын
The moment i start the video i like it coz i already know the explanation is gonna be awesome
@jjhphotography3 жыл бұрын
Really helpful video. The explanation was very thorough and helpful
@bhabishyachaudhary3495 Жыл бұрын
Great explanation thank you so much.
@congminhinh23423 жыл бұрын
simple, clear and short!
@zaffa129 ай бұрын
This one made me cry from feeling dumb
@Lulit9992 жыл бұрын
Your solution has ~90MB memory usage, while this one have only 19MB memory usage (because we do not copy inorder/preorder sublists). class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: inorder_value_to_index = {value: x for x, value in enumerate(inorder) } node_index = 0 def build(left, right): nonlocal node_index if left > right: return None node = TreeNode(preorder[node_index]) split_point = inorder_value_to_index[node.val] node_index += 1 node.left = build(left, split_point - 1) node.right = build(split_point + 1, right) return node return build(0, len(preorder) - 1)
@josephcs12352 жыл бұрын
Notice there wasnt. Could you explain what the runtime and memory usage is? I was having a hard time trying to factor in the runtime and memory usage of the array slice.
@anjanaouseph460521 күн бұрын
Did you figure it out? I can't wrap my head around it?
@ArdianUmam3 ай бұрын
Great explanation, thanks! I wonder, what if there is a duplicate in the inorder list?
@Molly-e5w9 ай бұрын
O(n) solution: class Solution: def buildTree(self, preorder: List[int], inorder: List[int]) -> Optional[TreeNode]: # map the node value to its index for O(1) lookups inorder_map = {inorder[i]: i for i in range(len(inorder))} def build(preorder, inorder_start, inorder_end): if not preorder or not inorder: return None left_size = inorder_map[preorder[0]] if left_size < inorder_start or left_size > inorder_end: return None root = TreeNode(preorder.pop(0)) root.left = build(preorder, inorder_start, left_size - 1) root.right = build(preorder, left_size + 1, inorder_end) return root return build(preorder, 0, len(inorder) - 1)
even if we pass the same preorder list excluding the 0th element , it should work ?
@illu1na Жыл бұрын
Only thing that is missing from Neetcode's otherwise almost perfect video is the time and space complexity analysis. So is his solution O(n^2) for time (n recur * n item slicing) and also O(n^2) space (n recur * each recur requiring n space?)?
@alexzhuisme2 жыл бұрын
Thanks for the explanation, helps a lot!
@NeetCode2 жыл бұрын
Glad it helped!
@pro_myth_eus68979 ай бұрын
My question is if they replace one of the arrays with the postorder array, will it still be possible to build the tree?
@sunnychoudhary46272 жыл бұрын
Greattt videos man. Can you do time and space at end of each video. That would literally finish whole cycle.
@TarasLeskiv3 жыл бұрын
What is the time/space complexity of this solution?
@OK-iw5im2 жыл бұрын
Awesome explanation thank you
@kirillzlobin71356 ай бұрын
Preorder and inorder variables make sense only as inputs for the general function. As the number of elements should be the same. Later name preorder and inorder are misleading a bit. Because they do not represent all nodes of the tree and the number of elements in each of them is different. Do I understand this correctly?
@calculatorcalculator5998 Жыл бұрын
Thanks for explanation! Still the confusing part for me is that you're using the same "mid" index for both preorder and inorder arrays and cannot catch an idea why is it working :)
@leah7291 Жыл бұрын
That's explained around 12:05 "mid" is the index in the inorder array and also the length of the left subtree after 1 in the preorder array
@calculatorcalculator5998 Жыл бұрын
@@leah7291, yeah, but the neurons in my brain stubbornly resisted making the necessary connections. Now I finally seem to understand. But it's not something I could ever have figured out on my own
@tomarintomarin95202 жыл бұрын
Amazing tyty, and I love your channel name lmao
@navenkumarduraisamy62603 жыл бұрын
Please make a video on binary tree construction from preorder and postorder traversals!
@TheKikSmile Жыл бұрын
One of the harder medium questions IMO
@saibharadwajvedula67933 жыл бұрын
Love you 3000! @NeetCode
@samarthjain501520 күн бұрын
Follow up: If the Binary Tree had duplicate values (i.e, if different nodes in the tree have the same value), how would you solve this problem?
@____________70352 жыл бұрын
through this explanation, it made more sense but this is definitely not a medium level question.
@brandenchong5482 жыл бұрын
Is it better to use binary search instead of inorder.index to bring the time complexity down?
@nirupomboseroy60672 жыл бұрын
the array is not sorted or partially sorted so you cannot perform binary search you can use a hashmap, like the solution given on leetcode