How interesting, I just learned banachs fixed point theorem for generell metric spaces last week!
@ProfOmarMath3 жыл бұрын
The timing!!
@BA-ul7rl8 ай бұрын
Thank you! You saved my life! So many other videos just talk theory without any examples.
@aliguliyev18665 ай бұрын
Very clear and direct explanation. I liked this video so much. Thanks a lot.
@micomrkaic3 жыл бұрын
This is very nice. Fixed point theorems are used all over the place in theoretical economics, e.g. in infinite horizon dynamic programming. The difference is that the fixed point in the particular case of dynamic programming is a function, not a number.
@ProfOmarMath3 жыл бұрын
Definitely!
@FluffleOW2 жыл бұрын
Thank you so much!! I'm watching your videos to try and get my head around these concepts for my last ever econ module before I graduate!
@ProfOmarMath2 жыл бұрын
Thank you!
@riadsouissi3 жыл бұрын
I like any video about fixed points. In the same subject, I would love to see a video on the Brouwer fixed point theorem and Borsuk-Ulam theorem This said, since you used the derivative of cos(x)^2, I feel it is a bit like a catch 22 since showing that the function x-1/2cos(x)^2 is always increasing (derivate is always positive) and its end points imply a unique fixed point 😅
@ProfOmarMath3 жыл бұрын
I actually thought about this haha, good catch!
@242math3 жыл бұрын
this contraction mapping theorem is fascinating, great job prof
@ProfOmarMath3 жыл бұрын
It’s very interesting!
@hrs73053 жыл бұрын
Cool , I have seen few variants of it 1st- where nth iterate of f is a contraction then f has a unique fixed point (By nth iterate of f I mean fofo....f (n time composition) I also has some cool applications like cos(x) has a unique fixed point in the interval [0,2pi] Notice that cos is not a contraction bus cos o cos is a contraction ( sin(cosx)*sinx < 1 ) 2nd - on a compact metric space a distance decreasing map gives you a unique fixed point , this is nice because it is easier to find distance decreasing maps than to find a contraction (contraction is a distance decreasing map) distance decreasing map means f : X -> X d(f x , f y) < d(x , y)
@ProfOmarMath3 жыл бұрын
Definitely like these generalizations
@wesleydeng713 жыл бұрын
Cool! By the way, the actual fixed point is approx. x=0.417715
@ProfOmarMath3 жыл бұрын
The theorem gives an iterative way to approximate, nice!
@thedoublehelix56613 жыл бұрын
Fixed points are really cool! Especially because they can be explained to people without much background in math. By the way, an easier proof for why that equation has a unique solution can be obtained just by differentiating 0.5cos^2x-x and noticing that it is negative on that interval.
@ProfOmarMath3 жыл бұрын
I did notice that haha. Should have picked a more subtle situation!
@kristimeacham69872 жыл бұрын
Thank you so much! This made things really clear. I would definitely watch more analysis videos from you!
@ProfOmarMath2 жыл бұрын
Thanks Kristi! Hopefully I can make more 😁
@mustafa-damm3 жыл бұрын
Incredibly useful
@ProfOmarMath3 жыл бұрын
Very much
@robertgerbicz3 жыл бұрын
More direct way for the 14:09 place, without using the mean value theorem: We know: cos(2*x)=2*cos(x)^2-1 from this cos(x)^2=(cos(2*x)+1)/2 so 1/2*(cos(x)^2-cos(y)^2)=(cos(2*x)-cos(2*y))/4=-1/2*sin(x+y)*sin(x-y), where used an addition formula. since abs(sin(z))
@ProfOmarMath3 жыл бұрын
Definitely, I think yoav mentioned this earlier
@aashsyed12773 жыл бұрын
I appreciate you so much.....!!!!!!!!!
@ProfOmarMath3 жыл бұрын
You too aash
@aashsyed12773 жыл бұрын
@@ProfOmarMath THANKS
@aashsyed12773 жыл бұрын
@@ProfOmarMath YOU ARE WELCOME
@xCorvus7x3 жыл бұрын
4:01 So, all contractions defined like this are continuous.
@ProfOmarMath3 жыл бұрын
Actually if we replace C with any constant the function will be continuous
@xCorvus7x3 жыл бұрын
@@ProfOmarMath Sorry, I'm not sure I can follow. Have you not considered C to be arbitrary? If a function has a discontinuity, couldn't you always find an x and a y that are closer to each other than f(x) and f(y) are, simply by approaching the discontinuity from different sides? What would a discontinuous function look like that meets this criterion for a special C?
@ProfOmarMath3 жыл бұрын
That inequality holds for all x,y and not for a specific choice of x,y so if you let y be the point where the discontinuity occurs then f(y) will be too far from f(x) when x is very close to y
@xCorvus7x3 жыл бұрын
@@ProfOmarMath Okay, that's true. But in your first response, have you not said that for the contraction f to be continuous, we need C to be arbitrary? I thought, you had done so in the video.
@ProfOmarMath3 жыл бұрын
For a contraction C has to be at most 1. It happens to be the case that if we look even beyond contraction mappings, any function f that satisfied the condition |f(x)-f(y)|