Coordinate Transformation: Rotations - Exercises

  Рет қаралды 9,685

Pen and Paper Science

Pen and Paper Science

Күн бұрын

Пікірлер: 14
@insertusername5737
@insertusername5737 3 ай бұрын
Finally someone that is clear to explain, it's so hard to find this quality of explanation on these topics. Thank you so much
@PenandPaperScience
@PenandPaperScience 3 ай бұрын
Thank you so much for the kind words! :)
@PenandPaperScience
@PenandPaperScience 3 жыл бұрын
Timestamps: 0:00 Introduction 1:00 First Exercise 7:45 Second Exercise 13:40 Outro Hope it helps :)
@abhivaryakumar3107
@abhivaryakumar3107 11 ай бұрын
Man this video is amazing I couldnt find ANYTHING good on this topic You really really helped me for my exam Thanks my man
@PenandPaperScience
@PenandPaperScience 11 ай бұрын
I am glad you found this video then! Good luck witht the exam!! 🤞😎
@chidumebichukwuneke8274
@chidumebichukwuneke8274 Жыл бұрын
Why did we use the negative of the angle we found in the rotational matrix
@wolowizard4441
@wolowizard4441 Жыл бұрын
was also coming to ask that
@PenandPaperScience
@PenandPaperScience Жыл бұрын
Excellent question! I try to explain this starting at 02:20 Basically, the rotation matrix is derived specifically for rotating vectors inside a fixed coordinate system. What we do here, however, is not rotate the vector, but rather the coordinate axis themselves! Now imagine that rotating a vector over an angle alpha, is the same as rotating the coordinate axis over an angle -alpha when leaving the vector unchanged. I have a video where I derive the rotation matrix, perhaps that one also helps: kzbin.info/www/bejne/e4vYl5x_rNykfKM If my explanation is not clear, feel free to follow-up (:
@evaristensabimana1541
@evaristensabimana1541 26 күн бұрын
Why do we use the rotation angle with opposite sign?
@PenandPaperScience
@PenandPaperScience 26 күн бұрын
It all depends on the vantage point: rotating a vector over an angle alpha with the x-y axes fixed, is identical to rotating the x-y axes over an angle -alfa with the vector fixed.
@wolowizard4441
@wolowizard4441 Жыл бұрын
why can we rewrite alpha as tan(-1) ?
@PenandPaperScience
@PenandPaperScience Жыл бұрын
Good question! Using the triangle I drew at 09:45, we can use the definition of the tangent of alpha to equate it to y/x. Now, to get the angle alpha out of the tangent, we have to apply the inverse function of the tangent. This is done in the same way to get an "x" out of a square root. The inverse of the square root is taking the square. The inverse of the tangent is written as tan^-1. Does this make sense? If not, let me know.
@slifer4963
@slifer4963 7 ай бұрын
Hey there, in the first exercise, do you know why [x' y"] is written in a 2x1 matrix instead of a 1x2 matrix? Like : | a | | b | instead of [a b]
@PenandPaperScience
@PenandPaperScience 7 ай бұрын
I'm not entirely sure, but it *has* to be written as a 2x1 matrix for the matrix multiplication to be valid. If you want to get the new vector R_new = Matrix * R_old. Does that answer your question?
Polynomial Division - Exercises (step-by-step)
22:21
Pen and Paper Science
Рет қаралды 304
Coordinate Geometry: Rotation of axes- Derivation
19:59
Our Math Channel
Рет қаралды 73 М.
Long Nails 💅🏻 #shorts
00:50
Mr DegrEE
Рет қаралды 5 МЛН
They Chose Kindness Over Abuse in Their Team #shorts
00:20
I migliori trucchetti di Fabiosa
Рет қаралды 12 МЛН
Robotics 1 U1 (Kinematics) S3 (Rotation Matrices) P1 (Rotation Matrices)
22:01
Rotation Matrix for 2D Vectors
22:35
Physics Ninja
Рет қаралды 19 М.
Rotation matrix derivation (step-by-step prove)
5:05
Pen and Paper Science
Рет қаралды 73 М.
Euler's Formula Beyond Complex Numbers
29:57
Morphocular
Рет қаралды 235 М.
2.3 Rotations in 3D
11:14
Woolfrey
Рет қаралды 262 М.
Linear Algebra for Computer Scientists.  14. 3D Transformation Matrices
9:24
Computer Science Lessons
Рет қаралды 40 М.
Vectors | Chapter 1, Essence of linear algebra
9:52
3Blue1Brown
Рет қаралды 9 МЛН
Long Nails 💅🏻 #shorts
00:50
Mr DegrEE
Рет қаралды 5 МЛН