props to ur enthusiasm. If all teachers were as enthusiastic as you know knows maybe we would actually attend the lectures. Thx so much
@springvibes5344 Жыл бұрын
المُنقذ شكرًا جزيلًا.. I said in Arabic that you are Savior, so Thank you very much.
@tomascremaschi10082 жыл бұрын
Great explanation thank you! I can also see the passion you have for the subject which is amazing, keep the great work.
@WrathofMath2 жыл бұрын
Thanks a lot, I do my best! Let me know if you have any questions, and if you're looking for more on partitions and Bell numbers - I have a few more related videos... Recurrence Relation for Bell Numbers: kzbin.info/www/bejne/qYGqppevgcafo6c Recurrence proof: kzbin.info/www/bejne/l5PJdKOMdriZgq8
@harshporwal84798 ай бұрын
Explanation is crystal clear
@solitary6002 Жыл бұрын
I was introduced to this bell triangle as a way to count the number of possible equivalence relations on a set of n elements.... Back then I didn't know that every possible way to partition a set can be associated with an equivalence relation.
@pradeepmondal49434 жыл бұрын
Just osssm ❤️❤️❤️❤️loved it .. Great explaination .. Guys watch this , without any time waste...
@WrathofMath4 жыл бұрын
Thanks so much, I am glad it helped!
@ftherogamer107311 ай бұрын
Thank you it helped a lot i really like your way of teaching please keep it up i appreciate your work 😊
@vikasavasthi83463 жыл бұрын
Thanx it help me alot in public service exam for teaching. ❤️Love from INDIA 🇮🇳
@WrathofMath3 жыл бұрын
So glad to hear it, thanks for watching and much love back from the east coast of the USA!
@AManOfMusic2 жыл бұрын
I have a question about these Bell numbers. I was messing around with the infinite factorial sum for e. 1/n! Then , I decided to see what would happen if I replaced 1 with n, so I wrote n/n!, and the answer was e. Then, I squared the top n, and the answer I got was 2e. Then, I cubed the n, and the answer I got was 5e. I kept going with this, and I only got multiples of e: 2, 5, 15, 52, 203, 877, 4140... Even with the first two sums I did, 1 is just n^0, and n is n^1, so I get the first two 1's of the sequence. Why do these Bell numbers show up with e?
@mayurtummewar33122 жыл бұрын
its mathemagic 🤩
@mamaligakimchi Жыл бұрын
It was an amazing explanation, thank you so much!
@WrathofMath Жыл бұрын
You're very welcome!
@mayurtummewar33122 жыл бұрын
ooho 🤩 the outro is fire 🔥🔥🔥
@AnkitKumar-ur2gq4 жыл бұрын
Understood in just one go, thank you sir 😁
@WrathofMath4 жыл бұрын
Glad to hear it! Thanks a lot for watching and let me know if you ever have any video requests!
@chamudisewmini34213 жыл бұрын
I was trying to find this by myself. But now I know I was wrong. Thank you very much for the video 😍
@WrathofMath3 жыл бұрын
Glad it helped, thanks for watching! Being wrong is one of the most interesting parts of math, always satisfying to realize what you're missing when you can't quite crack a problem!
@illusion76872 жыл бұрын
Great explanation sir❤😇
@WrathofMath2 жыл бұрын
Thank you!
@pasqualedippolito3135Ай бұрын
Great explanation
@WrathofMathАй бұрын
Thank you!
@farukahmed31793 жыл бұрын
Great Explanatio level is on fire🔥🔥
@WrathofMath3 жыл бұрын
Thank you! If you want some real fire, check out my math songs! kzbin.info/aero/PLztBpqftvzxW7a66b0dJPgknWsfbFQP-c
@valor36az2 жыл бұрын
Awesome video thanks !
@WrathofMath2 жыл бұрын
Thanks for watching!
@shreshthdimri64123 жыл бұрын
Killer Explanation.
@utkarshtripathi23493 жыл бұрын
Great Explanation! Thank you so much
@WrathofMath3 жыл бұрын
Thank you, so glad it helped! I don't know if you saw my other two lessons on this topic, here they are if not! Bell Numbers and their Recurrence Relation: kzbin.info/www/bejne/l5PJdKOMdriZgq8 Proof of the Recurrence: kzbin.info/www/bejne/qYGqppevgcafo6c
@hibaamu72343 жыл бұрын
Awesome sir u teach awesome 👌 👏 👍 😎 😀
@WrathofMath3 жыл бұрын
Thank you, I do my best! If you're looking for more on partitions and bell numbers, check out my two related videos... kzbin.info/www/bejne/qYGqppevgcafo6c kzbin.info/www/bejne/l5PJdKOMdriZgq8
@mokoepa3 жыл бұрын
This is gold... Holy Molly...
@WrathofMath3 жыл бұрын
Thanks for watching! I made a couple other videos on this topic if you're interested. kzbin.info/www/bejne/qYGqppevgcafo6c kzbin.info/www/bejne/l5PJdKOMdriZgq8
@ceerie7487 Жыл бұрын
10:14 I get confused on this part for the last 2 elements why not add {3},{4} but he then immediately jumps to 3 elements which is 1,2,3? Edit: Okay nvm, he added it later on
@avinashagrahari71063 жыл бұрын
I liked your video...it's very help for us sir...👌👌
@WrathofMath3 жыл бұрын
Thanks for watching, glad it was helpful! Check out the other two lessons I did on this topic if you're interested! kzbin.info/www/bejne/qYGqppevgcafo6c kzbin.info/www/bejne/l5PJdKOMdriZgq8
@naanungamulla65282 жыл бұрын
Amazing trick and teaching is very good attractive
@WrathofMath2 жыл бұрын
Thanks a lot, glad you liked it!
@divyadharshini16483 жыл бұрын
Very Very useful
@WrathofMath3 жыл бұрын
Glad to hear it, thanks for watching!
@iitianrupa45134 жыл бұрын
Please make full vedios and more for all combinatorics topics,thankyou!!😊
@WrathofMath4 жыл бұрын
You're very welcome and thank you for watching! More combinatorics videos are on the way!
@tirthpatel203 жыл бұрын
Amazing Explanation! ...Thank you ❤️
@WrathofMath3 жыл бұрын
Glad it helped! Thanks for watching!
@mathwizards67854 жыл бұрын
😍😍😍😍sir amazing explanation
@WrathofMath4 жыл бұрын
Thank you! I am glad it was clear and let me know if you ever have any questions!
@johndoe96593 жыл бұрын
Please provide a geometric and animated proof of WHY adding Stirling numbers of the second kind add up to Bell numbers. Also: please provide a non-recursive, closed formula for the Bell number and make a video that explains the formula in an intuitive way.
@MIKL3 жыл бұрын
Thank you ❤️
@WrathofMath3 жыл бұрын
You’re welcome 😊
@КЫРЫМСДЫШНМЕРЕКЗИШН2 жыл бұрын
What does n choose k mean?
@bradleyshepard3 жыл бұрын
thanks- well done!
@WrathofMath3 жыл бұрын
My pleasure, thanks for watching!
@jidebranco58373 жыл бұрын
Thank you!
@WrathofMath3 жыл бұрын
No problem - thanks for watching!
@matejcataric2259 Жыл бұрын
Where is your combinatorics playlist?
@griffinbur11182 жыл бұрын
Well-earned sub from me! Great video
@WrathofMath2 жыл бұрын
Thanks Griffin!
@mathsokparmeshwargurjar52913 жыл бұрын
Awesome
@shanedymaevallejos24003 жыл бұрын
thanks
@WrathofMath3 жыл бұрын
No problem, thanks for watching!
@gmjammin43674 жыл бұрын
Awesome video :)
@WrathofMath4 жыл бұрын
Thank you!
@neelabhabanerjee82472 жыл бұрын
Hi man, I am really struggling with problems of the binomial theorem and pigeon hole principle from this book "A walk through combinatorics, Bona", if possible can you suggest a few good books to start these topics off with? Thank you!
@WrathofMath2 жыл бұрын
I haven't read much straight combinatorics, so I can't say much about that (I have been wanting that particular book though). Proofs by Jay Cummings is a wonderful modern intro to proofs book that devotes some time to the Pigeonhole Principle. But you may not find it any more thorough or useful than what's in Bona's. I am a big fan of Book of Proof, which is a free proofs book you can find online, but I honestly can't recall whether or not it has pigeonhole principle in it. I'd think it would, but I can't actually remember seeing it. I always sing the praises of A First Course in Graph Theory by Chartrand and Zhang, but that's all for Graph Theory, which comes later in the Bona text. I of course have over a hundred videos on graph theory.
@neelabhabanerjee82472 жыл бұрын
@@WrathofMath yes yes your graph theory proofs help a lot bro. Are you in linkedIn btw? We can connect maybe if you're interested.
@neelabhabanerjee82472 жыл бұрын
@@WrathofMath Also, you can make a Video on Ferrers shapes if possible they 're pretty interesting thoo
@KkPluto Жыл бұрын
broooooooooo thank uuuuuuuuuuuu
@WrathofMath Жыл бұрын
Glad to help!
@manuxoxo63994 жыл бұрын
Niccceeee!! 👑👑👑
@WrathofMath4 жыл бұрын
Thanks for watching!
@shielamaecaballes89133 жыл бұрын
Hi to my new crush 🥰.please notice me💙 i just love how you simplify things..
@WrathofMath3 жыл бұрын
Thank you for watching! 😊 Let me know if you ever have any video requests! Elegant simplicity and beauty, math is filled with it!
@МихаилСмирнов-ь6у Жыл бұрын
Отлично. Лайк.
@Subhajit_Paul123 Жыл бұрын
You didn't explain the recurrence relation.
@WrathofMath Жыл бұрын
kzbin.info/www/bejne/qYGqppevgcafo6c
@ritam_arya Жыл бұрын
you just showed that the recurrence relation works and all the possibilities of parting a set. i expected an explanation on why is it the way it is. so overall, it's a stupid video.