Covariance and correlation

  Рет қаралды 678,277

Ben Lambert

Ben Lambert

Күн бұрын

Пікірлер: 106
@cgabt1109
@cgabt1109 3 жыл бұрын
Good content lasts forever. This has been useful for me, old engineer dog in his mid 50's , relearning statistics. I couldn't get my head around the differences between these two measures - your video did the trick!
@luckyprod9013
@luckyprod9013 2 жыл бұрын
Man i feel you, 45 years old here and relearning math for my trading after 20 years spent on excel in corporate finance lol
@jospremji
@jospremji Жыл бұрын
@@luckyprod9013 hey, im into trading as well. how are you using statistics for your trading?
@meshreporting
@meshreporting 10 жыл бұрын
These videos have been nothing but helpful. Thank you so much!
@SpartacanUsuals
@SpartacanUsuals 10 жыл бұрын
Hi, glad to hear they are useful! All the best, Ben
@SpartacanUsuals
@SpartacanUsuals 11 жыл бұрын
Hi, thanks for your comment. Good question. Essentially what it means is that the maximum covariance between two random variables, X and Y, is given by when the two variables are the same. In this case the sqrt(var(x).var(x))=var(x). The proof of this depends on the Cauchy-Schwarz inequality, and was a little too involved for me to post here. However, I have added it to my list of videos to do in the future. Best, Ben
@ARM26878
@ARM26878 2 жыл бұрын
Hi Ben, have u gotten around to making that video? if yes could you please post the link? Thanks
@CodeWithZeyad
@CodeWithZeyad 28 күн бұрын
the video is 11 years old and still the best resource i found to learn this topic, thank you so much!
@talkohavy
@talkohavy 7 жыл бұрын
Well done! I'm taking a course called Linear Regression and I learned a lot from your video. Thank you for the lesson.
@harunsuaidi7349
@harunsuaidi7349 4 жыл бұрын
Ah, so that's where it comes from. I'm an Art graduate learning Statistics for my master degree in Instructional Technology. I never quite got how one could figure out the mathematical expression of the relationship between two sets of data. Now that you explained it, it becomes much clearer. Damn, mathematicians are smart.
@darynaivaskevych1907
@darynaivaskevych1907 6 жыл бұрын
Thank you for the brilliant explanation! I finally understand why these formulas are like this.
@h-s7218
@h-s7218 2 жыл бұрын
this video was just a piece of art ! thank you so much! well explained and really clear and smooth !
@gabrielasantana3809
@gabrielasantana3809 3 жыл бұрын
This guy just has a video for every question, thank you
@tjfirhfjejUTH24
@tjfirhfjejUTH24 8 жыл бұрын
good video very clear. if anyone is having trouble make sure you really understand joint pdfs, and expected values.
@emilylawrence6051
@emilylawrence6051 3 жыл бұрын
What kind of people disliked this video? this video is amazing! Thank you Ben!
@batuhantekmen6607
@batuhantekmen6607 3 жыл бұрын
Very intuitive and can be watched along with a formal explanation or numerical calculations! Thank you.
@ARM26878
@ARM26878 2 жыл бұрын
at 4:50 whats the intuition that the covariance of x,y can never exceed variance of x times variance of y" ? Thanks
@ARM26878
@ARM26878 2 жыл бұрын
probably you meant - the covariance of x,y can never exceed std dev of x times std dev of y" ? I'm still not sure about its intuition.
@antibioticsOfWorld
@antibioticsOfWorld 3 жыл бұрын
thank you !! i am doing masters in data science and it helped me to understand the basics properly
@kejeros
@kejeros 9 жыл бұрын
Thank you so much. I am actually getting excited for this final now. haha!
@COSMOPOLITANWORLD
@COSMOPOLITANWORLD 2 жыл бұрын
You made it easy to understand! Thanks a lot!!
@kunstkt
@kunstkt 11 жыл бұрын
Towards the end you say that var(x)*var(y) is "the greatest possible way in which x and y can covary". What does that mean?
@diodin8587
@diodin8587 4 жыл бұрын
+1
@kunstkt
@kunstkt 4 жыл бұрын
@@diodin8587 corr=cov/sd(x)*sd(y). The strongest possible correlations are 1 and -1, and they correspond to covariances of sd(x)*sd(y) and -sd(x)*sd(y). He must have meant the square root of var(x)*var(y).
@tymothylim6550
@tymothylim6550 3 жыл бұрын
Thank you very much for this video, Ben. It really helped me understand the intuition behind the formulae, as well as the relation between Cov and Corr! The visuals helped a lot with explaining, too!
@edentrainor776
@edentrainor776 4 жыл бұрын
This is such a damn clear ad well explained explanation it hurts.
@Jdonovanford
@Jdonovanford 7 жыл бұрын
I've read that the formula for betas is beta=cov(x,y)/var(x). However, the formula given in many places for betas does not divide by n (or n-2): beta=sum[(x-x_m)*(y-ym)]/sum(x-x_m)^2. IN this formula, neither the numerator or denominator are divided by N or n-1… to be called covariance and variance.
@myvoice8167
@myvoice8167 8 жыл бұрын
Hello Sir,You are such a good instructor.Great job!!!!!! May God Bless you and your loved ones..
@shashikalaraju5769
@shashikalaraju5769 4 жыл бұрын
Perfect. You are amazing teacher. You inspire me. Thank you
@Itsjustme.katieg
@Itsjustme.katieg 6 жыл бұрын
This is an awesome explanation. It would be even better if there was an example to accompany it
@questforprogramming
@questforprogramming 5 жыл бұрын
Yep...
@nickpenacl_
@nickpenacl_ 8 жыл бұрын
question not related with topic ... which instrument (system) did you use for write in the board, will appreciate your explain
@imzhaodong
@imzhaodong 10 жыл бұрын
I would say these videos are just awesome. thank you so much for effort.
@Stirner219
@Stirner219 7 жыл бұрын
It's really nice that you also explain the underlying logic of cov and cor. B/C doing without understanding is not much worth. Thanx :)
@owenlie
@owenlie 3 жыл бұрын
Straight to the brain! Thank You!
@Kike_Reloaded
@Kike_Reloaded 3 жыл бұрын
Great explanation, thanks for sharing!
@nackyding
@nackyding 3 жыл бұрын
Thank you for the concise definition.
@SachinModi9
@SachinModi9 2 жыл бұрын
Ben Ji, Awesome video..
@moliv8927
@moliv8927 Жыл бұрын
Good video, explained well and on point
@kamalgurnani924
@kamalgurnani924 6 жыл бұрын
Thanks a lot for explaining the idea behind that intuition!!!
@horizontaalschaalbaar9470
@horizontaalschaalbaar9470 7 жыл бұрын
Love the black background. For some unknown(?) reason, almost all programs use white backgrounds, which I hate because I don't want to be sitting in front of a big ball of light. Tip: there are great plugins to make webpages "dark".
@horizontaalschaalbaar9470
@horizontaalschaalbaar9470 7 жыл бұрын
I readded this comment because it was deleted. Why??? Strange things happen here... It even had likes gd!!!
@isabelchen3302
@isabelchen3302 Жыл бұрын
This is wonderful, thank you!
@july-9319
@july-9319 4 жыл бұрын
thank you for the intuition, ben!
@alextessier5727
@alextessier5727 9 жыл бұрын
So helpful to finally understand the difference and the why's! Thank you!
@nicholaschen5821
@nicholaschen5821 8 жыл бұрын
well, u said when P=1, it means X and Y are perfect positively related. Is that mean the gradian of the line is one or this just mean the points are in the same line and no matter the degree between the line and X-axis?
@SpartacanUsuals
@SpartacanUsuals 8 жыл бұрын
+Nicholas Chen Thanks for your comment - good question. If two variables are perfectly correlated then it means we can draw a perfectly straight line through samples from both variables. It doesn't require however, that the relationship is 1:1 between them. Essentially perfect correlation just means that we if we had one variable we could perfectly (ie with no error) predict the other variable. Does that make sense? Best, Ben
@nicholaschen5821
@nicholaschen5821 8 жыл бұрын
Thank you, that is a very helpful answer!!!
@Skandawin78
@Skandawin78 6 жыл бұрын
very good explanation. thanks. what is colinearity?
@MochitoMaker
@MochitoMaker 7 жыл бұрын
I don't get why in one case we have X>Mx and we get +++ and then we have the same equation with X>Mx and we get +- - What's the logic? Thanks.
@ugurgudelek
@ugurgudelek 5 жыл бұрын
X and Y dont have to be perfectly correlated. So, in some X>Mx cases, Y can be smaller than its mean.
@thebeautifulrainbow
@thebeautifulrainbow 2 ай бұрын
Simply, thank you.
@SciFiFactory
@SciFiFactory 4 жыл бұрын
Ah, so it is basically the normalized slope of a linear function? y=m*x with the slope [m]=[y/x] Then times x on both sides: y*x=m*x^2 On the left side would be the covariance, if you were to substitute it with (y-mu) and (x-mu). And then to normalize the units on both sides they are divided by something that has the same units as y*x. So here we use the standard deviations sy=sqrt(var(y)) and sx=sqrt(var(x)) .... But I am confused why it never gets bigger than the standard deviation? I mean, aren't like 32% of the samples out side of the standard deviation? So that in 32% of the cases you have something like (y-mu)>=sy , or in 5% of the cases you have something like (y-mu)>=2*sy ?
@utkarsh5667
@utkarsh5667 4 жыл бұрын
how did you prove that cov(X,Y)=0 implies there is no correlation between the random variables?
@shrijithr9345
@shrijithr9345 3 жыл бұрын
Can someone tell me or point to me someplace where it's explained "How we 'know' that the covariance of x,y can never exceed variance of x times variance of y" ?
@ARM26878
@ARM26878 2 жыл бұрын
I have the exact same doubt. Did u find out the answer?
@JackTheOrangePumpkin
@JackTheOrangePumpkin 4 жыл бұрын
Thanks, this was really enlightening
@najlahs7311
@najlahs7311 3 жыл бұрын
Thaaaaaank youuuuuu. So breif and clear.
@saraw8951
@saraw8951 5 жыл бұрын
Thank you so much! it's really helpful for my paper
@기바랜드
@기바랜드 6 жыл бұрын
Really appreciate for the perfect explanation.
@randomyoutubeaccount6906
@randomyoutubeaccount6906 5 жыл бұрын
I needed an example. What id Mew? and the expectation, is that the mean? also do we use the total of x and y anywhere? Sorry i'm bad at math and got lost in this video at the same point every time I watched.
@sidekick3rida
@sidekick3rida 2 жыл бұрын
What does it mean to "plot a realization?"
@christinating1340
@christinating1340 8 жыл бұрын
why use covariance when correlation can tell you the direction and strengh of a relationship in a standardized/comparable form? What does covariance give us that correlation does not?
@DmitriNesteruk
@DmitriNesteruk 8 жыл бұрын
There are plenty of places where covariance is used _in lieu_ of correlation. For example, in Modern Portfolio Theory we calculate the covariance matrix in order to be able to calculate the efficient frontier.
@EOCmodernRS
@EOCmodernRS 6 жыл бұрын
I'm not looking for a formula, I'm looking for examples. I don't get the formula. In my head it says ''(E(x)-E(x))*(E(y)-E(y), which is 0. I don't get the formula....
@Elsmeire
@Elsmeire 9 жыл бұрын
Exam in two days, great videos
@amanuelnigatu4621
@amanuelnigatu4621 Жыл бұрын
this what I want intuition tnx man
@sophievanbeek7768
@sophievanbeek7768 5 жыл бұрын
This is helping me so much, thank you!
@TrangPham-cy5km
@TrangPham-cy5km 5 жыл бұрын
Sophie Van Beek i dont know how to identity the (+) or (-)of Y. Can you help me
@palashmyaccount
@palashmyaccount 5 жыл бұрын
Great Explanation. Thank you!
@husseinfarag7937
@husseinfarag7937 4 жыл бұрын
Thanks man, this was really helpful
@Darius1295
@Darius1295 7 жыл бұрын
Important to point out that Covariance and Correlation can be zero even if the two variables are dependent.
@Josh54152
@Josh54152 9 жыл бұрын
This is very good, thank you for your help.
@waihinlee3899
@waihinlee3899 5 жыл бұрын
Thank you, very clear explanation.
@hondopirat2735
@hondopirat2735 6 жыл бұрын
Super Catalin, très utile !
@aref6561
@aref6561 8 жыл бұрын
Thank you very much. This was very helpful.
@piersanna8866
@piersanna8866 4 жыл бұрын
you say, if x is higher than its mean, then y tends to be also positive. But seconds later yous say if x is higher than its mean then the second parenthesis is likely to be negative. this doesn't make sense and is a contradiction.... could someone please explain????
@mohammadrezakhedmati7777
@mohammadrezakhedmati7777 3 жыл бұрын
He's talking about two different scenarios. In the first one, he assumes X and Y are positively correlated ( just like the first graph he drew) and in the second one he assumes these variables are negatively correlated (second graph). That's why the sign of the second parenthesis varies. You've probably figured this out by now, but I tried to give my explanation just in case someone else has the same question. Cheers!
@priyankpatel4041
@priyankpatel4041 6 жыл бұрын
can you give about jtc cross correlation detail
@emanuelhuber4312
@emanuelhuber4312 5 жыл бұрын
Thank you! Awesome video
@Banaan1985
@Banaan1985 8 жыл бұрын
Cheers dude. Helpful video
@jfregnard
@jfregnard 7 жыл бұрын
Very helpful. Thanks !
@andrescheepers3223
@andrescheepers3223 5 жыл бұрын
really enjoys the word sort've...
@henriquebenassi
@henriquebenassi 5 жыл бұрын
Excellent.
@GK-qv3xd
@GK-qv3xd 6 жыл бұрын
Brilliant!
@trent_tsu
@trent_tsu 3 жыл бұрын
thank u very much!
@GEconomaster112
@GEconomaster112 9 ай бұрын
Giga chad, thanks!!
@sanathgunawardena832
@sanathgunawardena832 2 жыл бұрын
Nice!
@pkavenger9990
@pkavenger9990 2 жыл бұрын
In future I think Universities will go obsolete. Any Government can pay experts to make a course and just upload it. Why burn your fuel and energy to get to a place and then spend so much energy coming back home to learn the same thing you can learn from just KZbin.
@arunthashapiruthviraj2783
@arunthashapiruthviraj2783 3 жыл бұрын
Clear my doubt
@magnusonx1
@magnusonx1 7 жыл бұрын
British accent....NICE ! ! ! Wishing all Yankees could have British accents
@khazovaru9892
@khazovaru9892 6 жыл бұрын
Thank youuuuuuuuu 😘😘😘😘
@robertotosacanogalarza9021
@robertotosacanogalarza9021 4 жыл бұрын
Good!
@hugovreugdenhil
@hugovreugdenhil 9 жыл бұрын
Thanks
@pomegranate8593
@pomegranate8593 3 жыл бұрын
cheers lad
@tastsolakis1519
@tastsolakis1519 6 жыл бұрын
thanks for the explanation really good! Next time though please talk a little more clear!
@hamzatarq7000
@hamzatarq7000 2 жыл бұрын
100%
@zip9267
@zip9267 5 жыл бұрын
help
@joannaqian7755
@joannaqian7755 Жыл бұрын
save my life
@bebla8381
@bebla8381 4 жыл бұрын
i want the fucking explanation for the formula, the intuitive reason of why it is what it is. why is that so hard to find? the ACTUAL intuitive explanation for the formula, every fucking video about covariance they show you the formula and thats it.. it makes me wonder if anyone actually understands where the formula truly comes from
@krunkerdylan6146
@krunkerdylan6146 7 ай бұрын
cut out the 'sort of' 🤣such a brit!
@deedi9001
@deedi9001 4 жыл бұрын
The logic is fucking confusing
@GuglielmoRiva97
@GuglielmoRiva97 4 жыл бұрын
try saying "sort of" less often
@ilhamkseibi6157
@ilhamkseibi6157 8 жыл бұрын
oh man, things with you sounds much more complicated, if you are trying to do something like khan academy, well you are not
@deepak2012able
@deepak2012able Жыл бұрын
Thankyou
Population vs sample quantities
2:25
Ben Lambert
Рет қаралды 50 М.
Covariance, Clearly Explained!!!
22:23
StatQuest with Josh Starmer
Рет қаралды 575 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
What is COVARIANCE? What is CORRELATION? Detailed video!
21:00
zedstatistics
Рет қаралды 134 М.
Correlation Coefficient
12:57
The Organic Chemistry Tutor
Рет қаралды 2,1 МЛН
Probability Theory 19 | Covariance and Correlation
11:18
The Bright Side of Mathematics
Рет қаралды 6 М.
Covariance Clearly Explained!
7:47
Normalized Nerd
Рет қаралды 101 М.
Lecture 21: Covariance and Correlation | Statistics 110
49:26
Harvard University
Рет қаралды 122 М.
Multicollinearity
5:17
Ben Lambert
Рет қаралды 204 М.
Covariance and Correlation Coefficient Video
7:01
Kevin Brown
Рет қаралды 272 М.
Pearson's Correlation, Clearly Explained!!!
19:13
StatQuest with Josh Starmer
Рет қаралды 402 М.
The covariance matrix
13:57
Serrano.Academy
Рет қаралды 102 М.