Good content lasts forever. This has been useful for me, old engineer dog in his mid 50's , relearning statistics. I couldn't get my head around the differences between these two measures - your video did the trick!
@luckyprod90132 жыл бұрын
Man i feel you, 45 years old here and relearning math for my trading after 20 years spent on excel in corporate finance lol
@jospremji Жыл бұрын
@@luckyprod9013 hey, im into trading as well. how are you using statistics for your trading?
@meshreporting10 жыл бұрын
These videos have been nothing but helpful. Thank you so much!
@SpartacanUsuals10 жыл бұрын
Hi, glad to hear they are useful! All the best, Ben
@SpartacanUsuals11 жыл бұрын
Hi, thanks for your comment. Good question. Essentially what it means is that the maximum covariance between two random variables, X and Y, is given by when the two variables are the same. In this case the sqrt(var(x).var(x))=var(x). The proof of this depends on the Cauchy-Schwarz inequality, and was a little too involved for me to post here. However, I have added it to my list of videos to do in the future. Best, Ben
@ARM268782 жыл бұрын
Hi Ben, have u gotten around to making that video? if yes could you please post the link? Thanks
@CodeWithZeyad28 күн бұрын
the video is 11 years old and still the best resource i found to learn this topic, thank you so much!
@talkohavy7 жыл бұрын
Well done! I'm taking a course called Linear Regression and I learned a lot from your video. Thank you for the lesson.
@harunsuaidi73494 жыл бұрын
Ah, so that's where it comes from. I'm an Art graduate learning Statistics for my master degree in Instructional Technology. I never quite got how one could figure out the mathematical expression of the relationship between two sets of data. Now that you explained it, it becomes much clearer. Damn, mathematicians are smart.
@darynaivaskevych19076 жыл бұрын
Thank you for the brilliant explanation! I finally understand why these formulas are like this.
@h-s72182 жыл бұрын
this video was just a piece of art ! thank you so much! well explained and really clear and smooth !
@gabrielasantana38093 жыл бұрын
This guy just has a video for every question, thank you
@tjfirhfjejUTH248 жыл бұрын
good video very clear. if anyone is having trouble make sure you really understand joint pdfs, and expected values.
@emilylawrence60513 жыл бұрын
What kind of people disliked this video? this video is amazing! Thank you Ben!
@batuhantekmen66073 жыл бұрын
Very intuitive and can be watched along with a formal explanation or numerical calculations! Thank you.
@ARM268782 жыл бұрын
at 4:50 whats the intuition that the covariance of x,y can never exceed variance of x times variance of y" ? Thanks
@ARM268782 жыл бұрын
probably you meant - the covariance of x,y can never exceed std dev of x times std dev of y" ? I'm still not sure about its intuition.
@antibioticsOfWorld3 жыл бұрын
thank you !! i am doing masters in data science and it helped me to understand the basics properly
@kejeros9 жыл бұрын
Thank you so much. I am actually getting excited for this final now. haha!
@COSMOPOLITANWORLD2 жыл бұрын
You made it easy to understand! Thanks a lot!!
@kunstkt11 жыл бұрын
Towards the end you say that var(x)*var(y) is "the greatest possible way in which x and y can covary". What does that mean?
@diodin85874 жыл бұрын
+1
@kunstkt4 жыл бұрын
@@diodin8587 corr=cov/sd(x)*sd(y). The strongest possible correlations are 1 and -1, and they correspond to covariances of sd(x)*sd(y) and -sd(x)*sd(y). He must have meant the square root of var(x)*var(y).
@tymothylim65503 жыл бұрын
Thank you very much for this video, Ben. It really helped me understand the intuition behind the formulae, as well as the relation between Cov and Corr! The visuals helped a lot with explaining, too!
@edentrainor7764 жыл бұрын
This is such a damn clear ad well explained explanation it hurts.
@Jdonovanford7 жыл бұрын
I've read that the formula for betas is beta=cov(x,y)/var(x). However, the formula given in many places for betas does not divide by n (or n-2): beta=sum[(x-x_m)*(y-ym)]/sum(x-x_m)^2. IN this formula, neither the numerator or denominator are divided by N or n-1… to be called covariance and variance.
@myvoice81678 жыл бұрын
Hello Sir,You are such a good instructor.Great job!!!!!! May God Bless you and your loved ones..
@shashikalaraju57694 жыл бұрын
Perfect. You are amazing teacher. You inspire me. Thank you
@Itsjustme.katieg6 жыл бұрын
This is an awesome explanation. It would be even better if there was an example to accompany it
@questforprogramming5 жыл бұрын
Yep...
@nickpenacl_8 жыл бұрын
question not related with topic ... which instrument (system) did you use for write in the board, will appreciate your explain
@imzhaodong10 жыл бұрын
I would say these videos are just awesome. thank you so much for effort.
@Stirner2197 жыл бұрын
It's really nice that you also explain the underlying logic of cov and cor. B/C doing without understanding is not much worth. Thanx :)
@owenlie3 жыл бұрын
Straight to the brain! Thank You!
@Kike_Reloaded3 жыл бұрын
Great explanation, thanks for sharing!
@nackyding3 жыл бұрын
Thank you for the concise definition.
@SachinModi92 жыл бұрын
Ben Ji, Awesome video..
@moliv8927 Жыл бұрын
Good video, explained well and on point
@kamalgurnani9246 жыл бұрын
Thanks a lot for explaining the idea behind that intuition!!!
@horizontaalschaalbaar94707 жыл бұрын
Love the black background. For some unknown(?) reason, almost all programs use white backgrounds, which I hate because I don't want to be sitting in front of a big ball of light. Tip: there are great plugins to make webpages "dark".
@horizontaalschaalbaar94707 жыл бұрын
I readded this comment because it was deleted. Why??? Strange things happen here... It even had likes gd!!!
@isabelchen3302 Жыл бұрын
This is wonderful, thank you!
@july-93194 жыл бұрын
thank you for the intuition, ben!
@alextessier57279 жыл бұрын
So helpful to finally understand the difference and the why's! Thank you!
@nicholaschen58218 жыл бұрын
well, u said when P=1, it means X and Y are perfect positively related. Is that mean the gradian of the line is one or this just mean the points are in the same line and no matter the degree between the line and X-axis?
@SpartacanUsuals8 жыл бұрын
+Nicholas Chen Thanks for your comment - good question. If two variables are perfectly correlated then it means we can draw a perfectly straight line through samples from both variables. It doesn't require however, that the relationship is 1:1 between them. Essentially perfect correlation just means that we if we had one variable we could perfectly (ie with no error) predict the other variable. Does that make sense? Best, Ben
@nicholaschen58218 жыл бұрын
Thank you, that is a very helpful answer!!!
@Skandawin786 жыл бұрын
very good explanation. thanks. what is colinearity?
@MochitoMaker7 жыл бұрын
I don't get why in one case we have X>Mx and we get +++ and then we have the same equation with X>Mx and we get +- - What's the logic? Thanks.
@ugurgudelek5 жыл бұрын
X and Y dont have to be perfectly correlated. So, in some X>Mx cases, Y can be smaller than its mean.
@thebeautifulrainbow2 ай бұрын
Simply, thank you.
@SciFiFactory4 жыл бұрын
Ah, so it is basically the normalized slope of a linear function? y=m*x with the slope [m]=[y/x] Then times x on both sides: y*x=m*x^2 On the left side would be the covariance, if you were to substitute it with (y-mu) and (x-mu). And then to normalize the units on both sides they are divided by something that has the same units as y*x. So here we use the standard deviations sy=sqrt(var(y)) and sx=sqrt(var(x)) .... But I am confused why it never gets bigger than the standard deviation? I mean, aren't like 32% of the samples out side of the standard deviation? So that in 32% of the cases you have something like (y-mu)>=sy , or in 5% of the cases you have something like (y-mu)>=2*sy ?
@utkarsh56674 жыл бұрын
how did you prove that cov(X,Y)=0 implies there is no correlation between the random variables?
@shrijithr93453 жыл бұрын
Can someone tell me or point to me someplace where it's explained "How we 'know' that the covariance of x,y can never exceed variance of x times variance of y" ?
@ARM268782 жыл бұрын
I have the exact same doubt. Did u find out the answer?
@JackTheOrangePumpkin4 жыл бұрын
Thanks, this was really enlightening
@najlahs73113 жыл бұрын
Thaaaaaank youuuuuu. So breif and clear.
@saraw89515 жыл бұрын
Thank you so much! it's really helpful for my paper
@기바랜드6 жыл бұрын
Really appreciate for the perfect explanation.
@randomyoutubeaccount69065 жыл бұрын
I needed an example. What id Mew? and the expectation, is that the mean? also do we use the total of x and y anywhere? Sorry i'm bad at math and got lost in this video at the same point every time I watched.
@sidekick3rida2 жыл бұрын
What does it mean to "plot a realization?"
@christinating13408 жыл бұрын
why use covariance when correlation can tell you the direction and strengh of a relationship in a standardized/comparable form? What does covariance give us that correlation does not?
@DmitriNesteruk8 жыл бұрын
There are plenty of places where covariance is used _in lieu_ of correlation. For example, in Modern Portfolio Theory we calculate the covariance matrix in order to be able to calculate the efficient frontier.
@EOCmodernRS6 жыл бұрын
I'm not looking for a formula, I'm looking for examples. I don't get the formula. In my head it says ''(E(x)-E(x))*(E(y)-E(y), which is 0. I don't get the formula....
@Elsmeire9 жыл бұрын
Exam in two days, great videos
@amanuelnigatu4621 Жыл бұрын
this what I want intuition tnx man
@sophievanbeek77685 жыл бұрын
This is helping me so much, thank you!
@TrangPham-cy5km5 жыл бұрын
Sophie Van Beek i dont know how to identity the (+) or (-)of Y. Can you help me
@palashmyaccount5 жыл бұрын
Great Explanation. Thank you!
@husseinfarag79374 жыл бұрын
Thanks man, this was really helpful
@Darius12957 жыл бұрын
Important to point out that Covariance and Correlation can be zero even if the two variables are dependent.
@Josh541529 жыл бұрын
This is very good, thank you for your help.
@waihinlee38995 жыл бұрын
Thank you, very clear explanation.
@hondopirat27356 жыл бұрын
Super Catalin, très utile !
@aref65618 жыл бұрын
Thank you very much. This was very helpful.
@piersanna88664 жыл бұрын
you say, if x is higher than its mean, then y tends to be also positive. But seconds later yous say if x is higher than its mean then the second parenthesis is likely to be negative. this doesn't make sense and is a contradiction.... could someone please explain????
@mohammadrezakhedmati77773 жыл бұрын
He's talking about two different scenarios. In the first one, he assumes X and Y are positively correlated ( just like the first graph he drew) and in the second one he assumes these variables are negatively correlated (second graph). That's why the sign of the second parenthesis varies. You've probably figured this out by now, but I tried to give my explanation just in case someone else has the same question. Cheers!
@priyankpatel40416 жыл бұрын
can you give about jtc cross correlation detail
@emanuelhuber43125 жыл бұрын
Thank you! Awesome video
@Banaan19858 жыл бұрын
Cheers dude. Helpful video
@jfregnard7 жыл бұрын
Very helpful. Thanks !
@andrescheepers32235 жыл бұрын
really enjoys the word sort've...
@henriquebenassi5 жыл бұрын
Excellent.
@GK-qv3xd6 жыл бұрын
Brilliant!
@trent_tsu3 жыл бұрын
thank u very much!
@GEconomaster1129 ай бұрын
Giga chad, thanks!!
@sanathgunawardena8322 жыл бұрын
Nice!
@pkavenger99902 жыл бұрын
In future I think Universities will go obsolete. Any Government can pay experts to make a course and just upload it. Why burn your fuel and energy to get to a place and then spend so much energy coming back home to learn the same thing you can learn from just KZbin.
@arunthashapiruthviraj27833 жыл бұрын
Clear my doubt
@magnusonx17 жыл бұрын
British accent....NICE ! ! ! Wishing all Yankees could have British accents
@khazovaru98926 жыл бұрын
Thank youuuuuuuuu 😘😘😘😘
@robertotosacanogalarza90214 жыл бұрын
Good!
@hugovreugdenhil9 жыл бұрын
Thanks
@pomegranate85933 жыл бұрын
cheers lad
@tastsolakis15196 жыл бұрын
thanks for the explanation really good! Next time though please talk a little more clear!
@hamzatarq70002 жыл бұрын
100%
@zip92675 жыл бұрын
help
@joannaqian7755 Жыл бұрын
save my life
@bebla83814 жыл бұрын
i want the fucking explanation for the formula, the intuitive reason of why it is what it is. why is that so hard to find? the ACTUAL intuitive explanation for the formula, every fucking video about covariance they show you the formula and thats it.. it makes me wonder if anyone actually understands where the formula truly comes from
@krunkerdylan61467 ай бұрын
cut out the 'sort of' 🤣such a brit!
@deedi90014 жыл бұрын
The logic is fucking confusing
@GuglielmoRiva974 жыл бұрын
try saying "sort of" less often
@ilhamkseibi61578 жыл бұрын
oh man, things with you sounds much more complicated, if you are trying to do something like khan academy, well you are not