In problem 79 finding zeros of (1-e^z) sinz alone is not enough to say that they are simple pole. Showing derivative of (1-e^z) sinz doesn't get vanishes on those zeros will say that those zeros are simple poles of the function
@naveendixit93042 жыл бұрын
yes you are right. mam, pahle apne concept clear karo tab video banao. students ko gumrah mat karo.
@rpriyadharshini50293 жыл бұрын
Mam q.no 81 12complex roots (option d) also right answer ?
@AbuHuraira-ez6hy2 жыл бұрын
How?
@SaddamHussain-js6ut4 жыл бұрын
In question 79 correct options will be 1 and 3.
@pmathematics4 жыл бұрын
Option 2 and 3 are correct options
@SaddamHussain-js6ut4 жыл бұрын
In 2nd option if we put k=0 then zero will be pole of order two.
@pmathematics4 жыл бұрын
@@SaddamHussain-js6ut Nhi.. If we put k=0 then Z=0 is a simple pole
@SaddamHussain-js6ut4 жыл бұрын
Ya mam you right . I'm extremely sorry.
@SaddamHussain-js6ut4 жыл бұрын
I shouldn't blamed like that.
@akashhalder86984 жыл бұрын
Good work
@pmathematics4 жыл бұрын
Thank you.. Please like, share with your friends & subscribe to our channel.
@arunnagargoje14394 жыл бұрын
Thank you so much madam
@pmathematics4 жыл бұрын
Wlcm
@mathematical25083 жыл бұрын
Mam in 82 question in first option u did in wrong way i think bcz if g holomorphic take z-1 and when u will do g/z then it has sing at z =0 so g/z is not analytic First option is correct for correct approch of this option is that h(z) = g'(0) and g is entire and nth derivative is also entire so h is entire so first correct If i am wrong please correct me