Curse of Dimensionality - EXPLAINED!

  Рет қаралды 5,624

CodeEmporium

CodeEmporium

Күн бұрын

Пікірлер: 14
@modakad
@modakad 3 ай бұрын
Thanks for the detailed explanation. The first part of the Euclidian max-min distance vs #dimensions was revealing ! One point I am thinking over is even though the max-min distance is shrinking, the ranking of distances will (or might) still hold true, irrespective of #dimensions. If that's the case, the algorithms should not loose any discriminative power in theory. In practice, yes, the strain this might bring on compute requirements can make it impractical and hence the needs to reduce dimensions. Would love to hear your thoughts @CodeEmporium
@msaw504
@msaw504 2 жыл бұрын
How does the curse of dimensionality affect the interpretation of features (their impacts) in the model? For example, in a linear regression (assuming all the requirements are satisfied) if the number of features are large will their coefficients be useless to understand their impacts? How about their p-values, can they be relied on?
@superghettoindian01
@superghettoindian01 Жыл бұрын
Really great summary and video as always!🎉🎉🎉🎉
@CodeEmporium
@CodeEmporium Жыл бұрын
Thank you!
@mikivanousek1030
@mikivanousek1030 2 жыл бұрын
You are good at explaining. Thanks and keep it up :)
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thanks so much! I shall :)
@Rizwankhan2000
@Rizwankhan2000 9 ай бұрын
@1:30 Is this diff b/w min and max normalized by number of dimensions?
@almonddonut1818
@almonddonut1818 Жыл бұрын
Wonderful explanation, thank you!
@CppExpedition
@CppExpedition 2 жыл бұрын
wonderful Explanation! i love it!
@harshitsati
@harshitsati 2 жыл бұрын
The thumbnail 😳🤯
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Thank you :)
@est9949
@est9949 2 жыл бұрын
This doesn't sound right.
@CodeEmporium
@CodeEmporium 2 жыл бұрын
Nothing ever does :)
Probability for Machine Learning!
27:35
CodeEmporium
Рет қаралды 7 М.
All Machine Learning algorithms explained in 17 min
16:30
Infinite Codes
Рет қаралды 491 М.
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН
Ozoda - Alamlar (Official Video 2023)
6:22
Ozoda Official
Рет қаралды 10 МЛН
RAG - Explained!
30:00
CodeEmporium
Рет қаралды 3,5 М.
The Curse of Dimensionality
11:42
Shaina Race Bennett
Рет қаралды 2,8 М.
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 413 М.
The Most Important Algorithm in Machine Learning
40:08
Artem Kirsanov
Рет қаралды 561 М.
Likelihood Estimation - THE MATH YOU SHOULD KNOW!
27:49
CodeEmporium
Рет қаралды 57 М.
Lecture 4 "Curse of Dimensionality / Perceptron" -Cornell CS4780 SP17
47:43
Entropy (for data science) Clearly Explained!!!
16:35
StatQuest with Josh Starmer
Рет қаралды 649 М.
Curse of Dimensionality : Data Science Basics
8:45
ritvikmath
Рет қаралды 28 М.
Every team from the Bracket Buster! Who ya got? 😏
0:53
FailArmy Shorts
Рет қаралды 13 МЛН