Bundles: first definitions

  Рет қаралды 7,630

DanielChanMaths

DanielChanMaths

Күн бұрын

Пікірлер: 8
@nikoulei5041
@nikoulei5041 11 ай бұрын
Thank you for making the videos! They helped me a lot!
@stilingiceland1403
@stilingiceland1403 4 жыл бұрын
Thanks for the course. I really like the clear math concept definition.
@MKWKezer
@MKWKezer 4 жыл бұрын
Great video! In the last part, I was confused at first, thinking "TG is trivial" to mean TG = 0 as vector spaces - but that was only silly me. This result is beautiful, though. I guess it says, in some sense, that Lie groups come with certain symmetries and "look the same locally".
@jmafoko
@jmafoko 3 жыл бұрын
A teacher per excellence
@tamirbuqaie557
@tamirbuqaie557 3 жыл бұрын
Great amazing
@jmafoko
@jmafoko 3 жыл бұрын
A pedogogical motivation for fibre bundles is product space. A trivial bundle is simply F x B. A fibre bundle is a sum of 'local' product spaces u x F s.t u in B. Vector bundle is bundle whose fibre is a vector. More precisely a bundle is a subjective map E to B , where E is sum of local products of F x u ( local trivial fibration). The map is important to define sections. Sections are a generalization of functions which is why bundle theory was invented in the first place. As langrange said 'mathematics is a study of function'. All mathematical theories are just a fancy way of talking about functions.
@loganreina2290
@loganreina2290 3 жыл бұрын
In the Lie Group example, I am confused by the notation dg(v). I assume that he is abusing notation and calling the map that multiplies by g (either on the left or the right take your pick) by the same group element that the map is derived from, g. There is still one more issue though. Where is the differential dg being evaluated? I assume since we are showing how the tangent spaces at all other points are induced by the structure of the tangent space at the identity that this is supposed to mean that dg is being evaluated at the identity. With these notational remarks I can see how this would obviously be the image of v under the differential of g at the identity. Have I interpreted this correctly?
@fawzyhegab
@fawzyhegab 6 жыл бұрын
I get "no connection" error everytime I play this video eventhoug all other videos work well.
Sections of vector bundles
34:40
DanielChanMaths
Рет қаралды 4,3 М.
A Quick Intro to Fiber Bundles (Hopf Fibration)
12:44
Richard Behiel
Рет қаралды 125 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
Don’t Choose The Wrong Box 😱
00:41
Topper Guild
Рет қаралды 62 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,8 МЛН
Why Vector Bundles
30:01
DanielChanMaths
Рет қаралды 20 М.
Construction of the tangent bundle - Lec 10 - Frederic Schuller
1:48:50
Frederic Schuller
Рет қаралды 62 М.
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 196 М.
Vector Bundle Defn and Examples
9:13
Harpreet Bedi
Рет қаралды 18 М.
De Rham Cohomology: PART 1- THE IDEA
9:54
Rooney
Рет қаралды 21 М.
Michael Atiyah  - Vector bundles (20/93)
3:23
Web of Stories - Life Stories of Remarkable People
Рет қаралды 8 М.
Riemann geometry -- covariant derivative
10:09
dXoverdteqprogress
Рет қаралды 255 М.
Introduction to Tensors
11:15
Faculty of Khan
Рет қаралды 521 М.
The derivative isn't what you think it is.
9:45
Aleph 0
Рет қаралды 714 М.
Tangent spaces and Riemannian manifolds
31:07
DanielChanMaths
Рет қаралды 20 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН