Data Analysis 6: Principal Component Analysis (PCA) - Computerphile

  Рет қаралды 163,909

Computerphile

Computerphile

Күн бұрын

Пікірлер: 124
@Computerphile
@Computerphile 5 жыл бұрын
Check out the full Data Analysis Learning Playlist: kzbin.info/aero/PLzH6n4zXuckpfMu_4Ff8E7Z1behQks5ba
@7177YT
@7177YT 5 жыл бұрын
awesome, thank you!!
@injeel_ahmed
@injeel_ahmed 3 жыл бұрын
FINALLY!!! I watched like 20 videos before this to understand PCA ( intuition ) and no one could explain it like you. THANKS A LOT MAN.
@dmarsub
@dmarsub 3 жыл бұрын
It is data reduction if you only plot PC1 and PC2 as a 2 dimensional graph. Which is very common.
@skydrow4523
@skydrow4523 5 жыл бұрын
Thank you Dr. Mike. I showed this to my neighbors and they told me it totally changed their life. My village also greatly appreciated PCA.
@sutterseba
@sutterseba 2 жыл бұрын
Did you show it to your parents as well? Do they still love you?
@dexterdev
@dexterdev Жыл бұрын
Did PCA transformed your village?
@AwesomeCrackDealer
@AwesomeCrackDealer 5 жыл бұрын
Holy shit this pca explanation was just what i needed all this time
@zerokelvin3626
@zerokelvin3626 5 жыл бұрын
Same for me
@nicholaselliott2484
@nicholaselliott2484 9 ай бұрын
Yep, it boggles the mind how formalism can completely obscure intuition. I guess the formal stuff works for the academic types
@heyandy889
@heyandy889 5 жыл бұрын
pretty dope. here I was laboring away in 223 dimensions. now I can put food on the table for my family with the time saved by removing 100 dimensions. thank u dr mike pound and computerphile
@adamtarnawski
@adamtarnawski 5 жыл бұрын
Dr Mike provided the best explanation of PCA to non-experts which I have ever seen. I very enjoyable and insightful video overall.
@nomen385
@nomen385 3 жыл бұрын
Yea. Everything he explains feels that way
@kanewilliams1653
@kanewilliams1653 9 ай бұрын
Why even have lectures? This fella explained why we "maximize the variance" so clearly in the first 5 minutes.. Lecturers should just make us watch this video in class... great stuff!
@mrcoomber9085
@mrcoomber9085 5 жыл бұрын
He's such a great presenter. Thank you for such wonderful videos.
@manuarteteco6153
@manuarteteco6153 4 жыл бұрын
Best PCA explanation I found so far, and I searched for days. Thanks man!
@OmarMohammed-fy2he
@OmarMohammed-fy2he 3 жыл бұрын
Dude, you're better at explaining this than our uni professor :""D please keep doing what you're doing. Thank you.
@andrei642
@andrei642 3 жыл бұрын
Well Omar, he is too a University Professor...
@OmarMohammed-fy2he
@OmarMohammed-fy2he 3 жыл бұрын
@@andrei642 I didn't know that at the time. I googled him and he turned out to be quite the expert. Regardless, He has a simple way of explaining things. not many others do.
@nitika9769
@nitika9769 11 ай бұрын
I finally get it!! It's people like you that keep me motivated for my work !
@Zilfalon
@Zilfalon 3 жыл бұрын
Thank you Dr. Pound, finally someone who can explain pca in easy words. Really helpful in my thesis - and by a strange accident I ended up writing both my thesis about pca. First time in my Bachelors I used it for data reduction, this time I use it to categorize data.
@harpercfc_
@harpercfc_ Жыл бұрын
I gotta say I enjoy this video so much and kinda started to under stand what PCA is and what it is used for. Totally a new and different angle to look at this concept. Thank you again Dr. Mike.
@adityapatel3535
@adityapatel3535 4 жыл бұрын
this is brilliantly explained. one can only simplify if one truly understands it. thanks
@jsraadt
@jsraadt 5 жыл бұрын
I recommend doing a parallel analysis before extracting principal components. This will tell you how many PCs explain more variance than can be explained at random.
@brandonbracho5898
@brandonbracho5898 3 жыл бұрын
best explanation for PCA I could find, thank you!
@ErickMarkevich
@ErickMarkevich 4 жыл бұрын
I really struggled to grasp the concept of PCA before, but thanks to your video it is now clear to me. Thank you
@HitAndMissLab
@HitAndMissLab 6 ай бұрын
Thank you for this brilliant video. In a less then a half an hour I developed intuition that it would take me a month to do from a book.
@Flourish38
@Flourish38 5 жыл бұрын
This video was EXACTLY what I needed right now. Thank you so much!!!
@gzuzchuy505
@gzuzchuy505 2 жыл бұрын
What a simple way to explain PCA! Thank you so much for the video.
@tlniec
@tlniec 3 жыл бұрын
Upon first hearing the phrase "principal component analysis", I thought it sounded very analogous to finding principal stress axes in a body under load. As Dr. Pound gave a more detailed explanation later, I realized that is exactly what it is - just expanded to take place in n-dimensional space instead of 3D space. May be a helpful way to visualize for any mechanical engineers out there.
@tellefsolberg5698
@tellefsolberg5698 4 жыл бұрын
Fricking loved that it was applied in R!
@sepidet6970
@sepidet6970 4 жыл бұрын
FInally I learnt what is PCA is and what is does, thank you very much.
@Eternity4Evil
@Eternity4Evil 3 жыл бұрын
Best explanation I've come upon as of yet. Thanks!
@demonblood8841
@demonblood8841 2 жыл бұрын
I'm late to the party but this playlist is gold. Thanks guys :)
@9785633425657
@9785633425657 10 ай бұрын
Thank you for explaining this! Very good quality of the video
@699ashi
@699ashi 3 жыл бұрын
I am just happy to see him using R for this example
@asgharbeigi9718
@asgharbeigi9718 2 жыл бұрын
Dr. Mike, you are a genius.
@__Wanderer
@__Wanderer 5 жыл бұрын
Dr. Mike your explanations are brilliant.
@man.h
@man.h 4 жыл бұрын
the best explanation I have seen so far. thank you so much!
@frobeniusfg
@frobeniusfg 5 жыл бұрын
Dutch angle is highly appropriate in this topic) Well done, cameraman :)
@muzzamilnadeem3104
@muzzamilnadeem3104 4 жыл бұрын
Great video. The understanding is very relevant to a lot of feature selection etc in data sciences
@GoatzAreEpic
@GoatzAreEpic 5 жыл бұрын
Beautiful explanation with the minimization of error
@simaykazc1508
@simaykazc1508 3 жыл бұрын
It is very pleasant to listen to you. Thanks!
@astropgn
@astropgn 5 жыл бұрын
What if you take these new axis (PC1, PC2, PC3...) and do a PCA again? Will they spread even more, or will they give the same exact result?
@f4614n
@f4614n 5 жыл бұрын
You'd get the exact same result, as with the constraints given in PCA, the solution is unique.
@ryadbelhakem1944
@ryadbelhakem1944 5 жыл бұрын
The solution is not unique, since pca was already applied the new axis are non correlated, therefore applying pca could at best perform a rotation of axis, replacing ax by -ax.
@sander_bouwhuis
@sander_bouwhuis 5 жыл бұрын
Outstanding explanation. Thank you, thank you, thank you!
@7177YT
@7177YT 5 жыл бұрын
Extra points for using R! Very much approved! Lovely! (:
@ec92009y
@ec92009y 3 жыл бұрын
Congratulations again for a great video. Thank you!
@paull923
@paull923 3 жыл бұрын
ridiculously understandable explained! thank you very much!
@ejkitchen
@ejkitchen 3 жыл бұрын
Great explanation. THANK YOU!
@kirar2004
@kirar2004 Жыл бұрын
A very nice explanation! Thanks!
@VG-bi9sw
@VG-bi9sw 3 жыл бұрын
Very nice explanation. I almost never subscribe but you got me. Thank you.
@annprong5052
@annprong5052 2 жыл бұрын
Great video. I also enjoyed the throwback stripey dot-matrix printer paper :)
@summy291987
@summy291987 4 жыл бұрын
Best explanation came upon so far!!
@breadandcheese1880
@breadandcheese1880 Ай бұрын
How do you get column names of that 133 features that make up PCA1 for submitting that as a data frame for Kmeans?
@shivammishra2524
@shivammishra2524 5 жыл бұрын
Great Video. I guess I would never forget PCA
@TAP7a
@TAP7a 4 жыл бұрын
Careful when scaling if you’re producing a model which will make predictions on unseen data - the mean that you will be subtracting and the standard deviation that you’re dividing by better be the same between the training set, the test set and the production sets!
@alexandros27.
@alexandros27. 3 жыл бұрын
I agree with most of what is being taught in this video . Using a new basis to maximize variance or minimize the projection error is why PCA is used . What I can't agree with however is the lecturer telling that PCA is used to cluster data . I don't think this is necessarily true . PCA clusters those features which are highly correlated together . It doesn't cluster the data points when they are represented using the new basis vectors . I hope I am not wrong
@jagaya3662
@jagaya3662 3 жыл бұрын
PCA clusters features by creating new axis, which can help to identify correlations for feature-engeneering. However you can still do actual clustering among the new axis and that wouldn't be affected by PCA at all, because data still has the exact same hyperdimensional relative positions, just the axis are shifted.
@sdeitym
@sdeitym 3 жыл бұрын
5:34 why when we rotate the axis data also split out as 2 clusters?
@timowesterdijk5840
@timowesterdijk5840 3 жыл бұрын
It is partly a coincidence, but not really. PCA1 gives you the axis that spreads out and separates your data the most (greatest variance). Because your data (from two dimensions) is now separated into one dimension, you can see if there are data points that correlate with eachother.
@omerahmaad
@omerahmaad 4 жыл бұрын
Probably the best explaination
@0000000854
@0000000854 4 жыл бұрын
summary: (1) draw line to maximize spread (2) minimize square error accumulation (3)project data to axis which maximize dataset variance
@PLAYERSLAYER_22
@PLAYERSLAYER_22 3 жыл бұрын
hence, “axial reprojection”
@0000000854
@0000000854 3 жыл бұрын
@@PLAYERSLAYER_22 thanks
@8eck
@8eck 3 жыл бұрын
So the idea behind it, is a finding a right angle to look at all data, where we can see clearly all data and distances between them. Looks more like support vector machine or SVM, where we increase dimensionality to fit the line on some other dimension.
@rijzone
@rijzone 4 жыл бұрын
I seriously watch these videos for fun
@TheHamzawasi
@TheHamzawasi 2 жыл бұрын
Thanks Dr. Mike, really helpful!
@m22d52
@m22d52 2 жыл бұрын
5:25 Why you have not constructed a center of data? Project points to both X and Y axis, calculate both averages and then draw perpendiculars where these averages will intersect which will be a center of dataset
@ControlTheGuh
@ControlTheGuh 3 жыл бұрын
That maximizes the variance=r2? Bc it seems like p1 was tvhere to minimize the variiance between the linne and the points no?
@Rockyzach88
@Rockyzach88 2 жыл бұрын
Good stuff. Is the "weighted sum" the frobenius norm or related? I'm following a book and I'm trying to compare how it is teaching this to how it is explained in other forms of media like youtube videos.
@juanluisbaldelomar1617
@juanluisbaldelomar1617 3 жыл бұрын
You saved me! Excellent video!!!
@Centhihi
@Centhihi 3 жыл бұрын
And what is the benefit of doing PCA? Are we training our neural networker quicker or why would I do this? I still have to collect all the variables, so what is the point?
@user-wr4yl7tx3w
@user-wr4yl7tx3w 2 жыл бұрын
But how do we make use of principle components afterwards, despite the fact that we can’t interpret the components since they no longer represent the original variables? Without interpretability, can PC still be useful? What can PC still tell us?
@amineaboutalib
@amineaboutalib 2 жыл бұрын
they do represent the original variables, what you have to do is to go through the weights and try to make sense of what kind of hidden variable the PC is representing
@erw103
@erw103 5 жыл бұрын
As I shall mention in my blog, There is a Method to Dr Mike's Madness. Brilliant!
@fakhermokadem11
@fakhermokadem11 5 жыл бұрын
Why does minimizing the error means maximizing the variance?
@Kasenkow
@Kasenkow 5 жыл бұрын
I think you're minimizing the error when you're fitting a line (which will be the new axis) to existing data points from two previous dimensions. Thus, this error is (as it was mentioned in the video) the summed squared differences between each actual data point and the line that you're trying to fit.
@Hexanitrobenzene
@Hexanitrobenzene 5 жыл бұрын
Judging by his sketch, PCA tries to maximize variance along PC1 axis, while at the same time minimizing error along all the axes orthogonal to PC1, then does the same for PC2 and so on.
@willd0g
@willd0g 5 жыл бұрын
Recall his fists; the line of best fit would pierce these two data points and introduce the axis that can directionally pivot the data to reveal greater variance (spread) as observed by the space between his hands as he turned them along that newly introduced axis
@djstr0b3
@djstr0b3 Жыл бұрын
Excellent video
@melikaelwadany4524
@melikaelwadany4524 2 жыл бұрын
Thank you for this video.
@trafalgarlaw9919
@trafalgarlaw9919 3 жыл бұрын
Thank you for the explanation.
@tapanbasak1453
@tapanbasak1453 Жыл бұрын
Genius explanation
@nomen385
@nomen385 3 жыл бұрын
"A new principal component is gonna come out orthogonal to the ones before, until you run out of dimensions and you can't do it anymore." - poetry
@whyzed603
@whyzed603 4 жыл бұрын
Why minimum distance of data points from the principal axis ensure the maximum length of the axis? Can someone explain or maybe I got something wrong?
@samalkayedktaishat9927
@samalkayedktaishat9927 3 жыл бұрын
thank you this made life easier .......i love your accent
@RamakrishnaSalagrama1
@RamakrishnaSalagrama1 5 жыл бұрын
Could not find the dataset. Could you please give a dropbox or drive link.
@4.0.4
@4.0.4 5 жыл бұрын
This is great content. It genuinely makes me want to pick RStudio and try to learn data analysis.
@pavanagarwal6753
@pavanagarwal6753 5 жыл бұрын
I wonder how mike learned so much if computerphile could give me the book from where we can extend the horizon??
@TeamRomeroJacobs
@TeamRomeroJacobs 5 жыл бұрын
Hey quick question for anyone out there. I'm failing to see if there's a difference between the principal component 1 and the linear regression. It seems to me they are the same thing. It is my understanding that Btw sorry bad english, not a native speaker.
@ryadbelhakem1944
@ryadbelhakem1944 5 жыл бұрын
Really not the same but clearly there is a link between both, one could transform pca optimization problem into a special regression using frobenus norm and basic algebra. Performing pca you look for non correlated axis, this is simply not the case for regression.
@pablobiedma
@pablobiedma 4 жыл бұрын
Great video Peter Parker
@BjarkeHellden
@BjarkeHellden 5 жыл бұрын
Great explanation
@rishidixit7939
@rishidixit7939 15 күн бұрын
How to project data from an n dimensional space to an m dimensional space. n > m
@passingthetorch5831
@passingthetorch5831 5 жыл бұрын
SVD when? Mike might also consider mentioning SVD approximation for convolutions, neural networks, etc.
@f4614n
@f4614n 5 жыл бұрын
If you are using PCA, in all likelihood you were applying SVD at some point (maybe without realizing it).
@pranayyanarp4118
@pranayyanarp4118 5 жыл бұрын
What.does ' foggin all ' mean?...at 8.47 time in video
@jfagerstrom
@jfagerstrom 5 жыл бұрын
He's saying 'orthogonal', meaning the second principal component is going to be at a 90 degree angle to the first one. Orthogonal is used since it describes this relationship without ambiguity for higher than 2 dimensions as well. It simply means that the two axes are completely uncorrelated.
@pranayyanarp4118
@pranayyanarp4118 5 жыл бұрын
@@jfagerstrom u mean he is pronouncing orthogonal as' foggin all" ?... It's in subtitles also
@jfagerstrom
@jfagerstrom 5 жыл бұрын
@@pranayyanarp4118 it's just his accent. The person who wrote the subtitles probably heard it the same way you did. He is for sure saying orthogonal though, it's the only thing that makes sense
@pranayyanarp4118
@pranayyanarp4118 5 жыл бұрын
@@jfagerstrom thanx man
@isabellabihy8631
@isabellabihy8631 5 жыл бұрын
If I remember multivariate statistics correctly, the name "factor analysis" comes to mind. Indeed, I like PCA better.
@frankietank8019
@frankietank8019 4 жыл бұрын
Brilliant, thanks!
@hasan0770816268
@hasan0770816268 5 жыл бұрын
Well that escalated quickly!
@proprius
@proprius 3 жыл бұрын
brilliant, thanks!
@tear728
@tear728 5 жыл бұрын
What about Exploratory Factor Analysis?
@RAINE____
@RAINE____ 5 жыл бұрын
Thanks for this
@kimiaebrahimi5346
@kimiaebrahimi5346 4 жыл бұрын
amaziiiing
@charlieangkor8649
@charlieangkor8649 3 жыл бұрын
"sponsorship from by Google" - was this piece of English generated by Google's AI?
@willw4096
@willw4096 Жыл бұрын
11:58
@leksa8845
@leksa8845 2 жыл бұрын
i fall in love:D
@Hamromerochannel
@Hamromerochannel Жыл бұрын
@ 9:45 starts r
@asifkhaliq9086
@asifkhaliq9086 4 жыл бұрын
Dr. Mike can you teach me privately please. . .
@donfeto7636
@donfeto7636 Жыл бұрын
don't watch the video if you know nothing about pca , come back after you know what is it from StatQuest or other channels
@framm703
@framm703 9 ай бұрын
Cool 😎
5 жыл бұрын
Dude, please use data.table::fread() instead of read.csv() for larger data
@onemanenclave
@onemanenclave 5 жыл бұрын
I agree, dude.
@TheChondriac
@TheChondriac 5 жыл бұрын
Dude
@heyandy889
@heyandy889 5 жыл бұрын
dude
@pexfmezccle
@pexfmezccle 4 жыл бұрын
“Orffogonal”
@brunomartel4639
@brunomartel4639 4 жыл бұрын
auto-generated subs pleaseeee!!!!!
@DEVSHARMA-zp8xv
@DEVSHARMA-zp8xv 5 жыл бұрын
It was nice but could have been better and longer if maths were included..
Data Analysis 7: Clustering - Computerphile
16:13
Computerphile
Рет қаралды 77 М.
Data Analysis 0: Introduction to Data Analysis - Computerphile
14:08
Computerphile
Рет қаралды 275 М.
UFC 287 : Перейра VS Адесанья 2
6:02
Setanta Sports UFC
Рет қаралды 486 М.
24 Часа в БОУЛИНГЕ !
27:03
A4
Рет қаралды 7 МЛН
Principal Component Analysis (PCA)
26:34
Serrano.Academy
Рет қаралды 418 М.
Principal Component Analysis (PCA) clearly explained (2015)
20:16
StatQuest with Josh Starmer
Рет қаралды 1 МЛН
17: Principal Components Analysis_ - Intro to Neural Computation
1:21:19
MIT OpenCourseWare
Рет қаралды 39 М.
Data Analysis 1: What is Data? - Computerphile
12:14
Computerphile
Рет қаралды 160 М.
Data Analysis 2: Data Visualisation - Computerphile
17:42
Computerphile
Рет қаралды 127 М.
StatQuest: Principal Component Analysis (PCA), Step-by-Step
21:58
StatQuest with Josh Starmer
Рет қаралды 3 МЛН
Ali Ghodsi, Lec 1: Principal Component Analysis
1:11:42
Data Science Courses
Рет қаралды 102 М.
Robust Principal Component Analysis (RPCA)
22:11
Steve Brunton
Рет қаралды 71 М.
What P vs NP is actually about
17:58
Polylog
Рет қаралды 142 М.