Check out the full Data Analysis Learning Playlist: kzbin.info/aero/PLzH6n4zXuckpfMu_4Ff8E7Z1behQks5ba
@7177YT5 жыл бұрын
awesome, thank you!!
@injeel_ahmed3 жыл бұрын
FINALLY!!! I watched like 20 videos before this to understand PCA ( intuition ) and no one could explain it like you. THANKS A LOT MAN.
@dmarsub3 жыл бұрын
It is data reduction if you only plot PC1 and PC2 as a 2 dimensional graph. Which is very common.
@skydrow45235 жыл бұрын
Thank you Dr. Mike. I showed this to my neighbors and they told me it totally changed their life. My village also greatly appreciated PCA.
@sutterseba2 жыл бұрын
Did you show it to your parents as well? Do they still love you?
@dexterdev Жыл бұрын
Did PCA transformed your village?
@AwesomeCrackDealer5 жыл бұрын
Holy shit this pca explanation was just what i needed all this time
@zerokelvin36265 жыл бұрын
Same for me
@nicholaselliott24849 ай бұрын
Yep, it boggles the mind how formalism can completely obscure intuition. I guess the formal stuff works for the academic types
@heyandy8895 жыл бұрын
pretty dope. here I was laboring away in 223 dimensions. now I can put food on the table for my family with the time saved by removing 100 dimensions. thank u dr mike pound and computerphile
@adamtarnawski5 жыл бұрын
Dr Mike provided the best explanation of PCA to non-experts which I have ever seen. I very enjoyable and insightful video overall.
@nomen3853 жыл бұрын
Yea. Everything he explains feels that way
@kanewilliams16539 ай бұрын
Why even have lectures? This fella explained why we "maximize the variance" so clearly in the first 5 minutes.. Lecturers should just make us watch this video in class... great stuff!
@mrcoomber90855 жыл бұрын
He's such a great presenter. Thank you for such wonderful videos.
@manuarteteco61534 жыл бұрын
Best PCA explanation I found so far, and I searched for days. Thanks man!
@OmarMohammed-fy2he3 жыл бұрын
Dude, you're better at explaining this than our uni professor :""D please keep doing what you're doing. Thank you.
@andrei6423 жыл бұрын
Well Omar, he is too a University Professor...
@OmarMohammed-fy2he3 жыл бұрын
@@andrei642 I didn't know that at the time. I googled him and he turned out to be quite the expert. Regardless, He has a simple way of explaining things. not many others do.
@nitika976911 ай бұрын
I finally get it!! It's people like you that keep me motivated for my work !
@Zilfalon3 жыл бұрын
Thank you Dr. Pound, finally someone who can explain pca in easy words. Really helpful in my thesis - and by a strange accident I ended up writing both my thesis about pca. First time in my Bachelors I used it for data reduction, this time I use it to categorize data.
@harpercfc_ Жыл бұрын
I gotta say I enjoy this video so much and kinda started to under stand what PCA is and what it is used for. Totally a new and different angle to look at this concept. Thank you again Dr. Mike.
@adityapatel35354 жыл бұрын
this is brilliantly explained. one can only simplify if one truly understands it. thanks
@jsraadt5 жыл бұрын
I recommend doing a parallel analysis before extracting principal components. This will tell you how many PCs explain more variance than can be explained at random.
@brandonbracho58983 жыл бұрын
best explanation for PCA I could find, thank you!
@ErickMarkevich4 жыл бұрын
I really struggled to grasp the concept of PCA before, but thanks to your video it is now clear to me. Thank you
@HitAndMissLab6 ай бұрын
Thank you for this brilliant video. In a less then a half an hour I developed intuition that it would take me a month to do from a book.
@Flourish385 жыл бұрын
This video was EXACTLY what I needed right now. Thank you so much!!!
@gzuzchuy5052 жыл бұрын
What a simple way to explain PCA! Thank you so much for the video.
@tlniec3 жыл бұрын
Upon first hearing the phrase "principal component analysis", I thought it sounded very analogous to finding principal stress axes in a body under load. As Dr. Pound gave a more detailed explanation later, I realized that is exactly what it is - just expanded to take place in n-dimensional space instead of 3D space. May be a helpful way to visualize for any mechanical engineers out there.
@tellefsolberg56984 жыл бұрын
Fricking loved that it was applied in R!
@sepidet69704 жыл бұрын
FInally I learnt what is PCA is and what is does, thank you very much.
@Eternity4Evil3 жыл бұрын
Best explanation I've come upon as of yet. Thanks!
@demonblood88412 жыл бұрын
I'm late to the party but this playlist is gold. Thanks guys :)
@978563342565710 ай бұрын
Thank you for explaining this! Very good quality of the video
@699ashi3 жыл бұрын
I am just happy to see him using R for this example
@asgharbeigi97182 жыл бұрын
Dr. Mike, you are a genius.
@__Wanderer5 жыл бұрын
Dr. Mike your explanations are brilliant.
@man.h4 жыл бұрын
the best explanation I have seen so far. thank you so much!
@frobeniusfg5 жыл бұрын
Dutch angle is highly appropriate in this topic) Well done, cameraman :)
@muzzamilnadeem31044 жыл бұрын
Great video. The understanding is very relevant to a lot of feature selection etc in data sciences
@GoatzAreEpic5 жыл бұрын
Beautiful explanation with the minimization of error
@simaykazc15083 жыл бұрын
It is very pleasant to listen to you. Thanks!
@astropgn5 жыл бұрын
What if you take these new axis (PC1, PC2, PC3...) and do a PCA again? Will they spread even more, or will they give the same exact result?
@f4614n5 жыл бұрын
You'd get the exact same result, as with the constraints given in PCA, the solution is unique.
@ryadbelhakem19445 жыл бұрын
The solution is not unique, since pca was already applied the new axis are non correlated, therefore applying pca could at best perform a rotation of axis, replacing ax by -ax.
Extra points for using R! Very much approved! Lovely! (:
@ec92009y3 жыл бұрын
Congratulations again for a great video. Thank you!
@paull9233 жыл бұрын
ridiculously understandable explained! thank you very much!
@ejkitchen3 жыл бұрын
Great explanation. THANK YOU!
@kirar2004 Жыл бұрын
A very nice explanation! Thanks!
@VG-bi9sw3 жыл бұрын
Very nice explanation. I almost never subscribe but you got me. Thank you.
@annprong50522 жыл бұрын
Great video. I also enjoyed the throwback stripey dot-matrix printer paper :)
@summy2919874 жыл бұрын
Best explanation came upon so far!!
@breadandcheese1880Ай бұрын
How do you get column names of that 133 features that make up PCA1 for submitting that as a data frame for Kmeans?
@shivammishra25245 жыл бұрын
Great Video. I guess I would never forget PCA
@TAP7a4 жыл бұрын
Careful when scaling if you’re producing a model which will make predictions on unseen data - the mean that you will be subtracting and the standard deviation that you’re dividing by better be the same between the training set, the test set and the production sets!
@alexandros27.3 жыл бұрын
I agree with most of what is being taught in this video . Using a new basis to maximize variance or minimize the projection error is why PCA is used . What I can't agree with however is the lecturer telling that PCA is used to cluster data . I don't think this is necessarily true . PCA clusters those features which are highly correlated together . It doesn't cluster the data points when they are represented using the new basis vectors . I hope I am not wrong
@jagaya36623 жыл бұрын
PCA clusters features by creating new axis, which can help to identify correlations for feature-engeneering. However you can still do actual clustering among the new axis and that wouldn't be affected by PCA at all, because data still has the exact same hyperdimensional relative positions, just the axis are shifted.
@sdeitym3 жыл бұрын
5:34 why when we rotate the axis data also split out as 2 clusters?
@timowesterdijk58403 жыл бұрын
It is partly a coincidence, but not really. PCA1 gives you the axis that spreads out and separates your data the most (greatest variance). Because your data (from two dimensions) is now separated into one dimension, you can see if there are data points that correlate with eachother.
@omerahmaad4 жыл бұрын
Probably the best explaination
@00000008544 жыл бұрын
summary: (1) draw line to maximize spread (2) minimize square error accumulation (3)project data to axis which maximize dataset variance
@PLAYERSLAYER_223 жыл бұрын
hence, “axial reprojection”
@00000008543 жыл бұрын
@@PLAYERSLAYER_22 thanks
@8eck3 жыл бұрын
So the idea behind it, is a finding a right angle to look at all data, where we can see clearly all data and distances between them. Looks more like support vector machine or SVM, where we increase dimensionality to fit the line on some other dimension.
@rijzone4 жыл бұрын
I seriously watch these videos for fun
@TheHamzawasi2 жыл бұрын
Thanks Dr. Mike, really helpful!
@m22d522 жыл бұрын
5:25 Why you have not constructed a center of data? Project points to both X and Y axis, calculate both averages and then draw perpendiculars where these averages will intersect which will be a center of dataset
@ControlTheGuh3 жыл бұрын
That maximizes the variance=r2? Bc it seems like p1 was tvhere to minimize the variiance between the linne and the points no?
@Rockyzach882 жыл бұрын
Good stuff. Is the "weighted sum" the frobenius norm or related? I'm following a book and I'm trying to compare how it is teaching this to how it is explained in other forms of media like youtube videos.
@juanluisbaldelomar16173 жыл бұрын
You saved me! Excellent video!!!
@Centhihi3 жыл бұрын
And what is the benefit of doing PCA? Are we training our neural networker quicker or why would I do this? I still have to collect all the variables, so what is the point?
@user-wr4yl7tx3w2 жыл бұрын
But how do we make use of principle components afterwards, despite the fact that we can’t interpret the components since they no longer represent the original variables? Without interpretability, can PC still be useful? What can PC still tell us?
@amineaboutalib2 жыл бұрын
they do represent the original variables, what you have to do is to go through the weights and try to make sense of what kind of hidden variable the PC is representing
@erw1035 жыл бұрын
As I shall mention in my blog, There is a Method to Dr Mike's Madness. Brilliant!
@fakhermokadem115 жыл бұрын
Why does minimizing the error means maximizing the variance?
@Kasenkow5 жыл бұрын
I think you're minimizing the error when you're fitting a line (which will be the new axis) to existing data points from two previous dimensions. Thus, this error is (as it was mentioned in the video) the summed squared differences between each actual data point and the line that you're trying to fit.
@Hexanitrobenzene5 жыл бұрын
Judging by his sketch, PCA tries to maximize variance along PC1 axis, while at the same time minimizing error along all the axes orthogonal to PC1, then does the same for PC2 and so on.
@willd0g5 жыл бұрын
Recall his fists; the line of best fit would pierce these two data points and introduce the axis that can directionally pivot the data to reveal greater variance (spread) as observed by the space between his hands as he turned them along that newly introduced axis
@djstr0b3 Жыл бұрын
Excellent video
@melikaelwadany45242 жыл бұрын
Thank you for this video.
@trafalgarlaw99193 жыл бұрын
Thank you for the explanation.
@tapanbasak1453 Жыл бұрын
Genius explanation
@nomen3853 жыл бұрын
"A new principal component is gonna come out orthogonal to the ones before, until you run out of dimensions and you can't do it anymore." - poetry
@whyzed6034 жыл бұрын
Why minimum distance of data points from the principal axis ensure the maximum length of the axis? Can someone explain or maybe I got something wrong?
@samalkayedktaishat99273 жыл бұрын
thank you this made life easier .......i love your accent
@RamakrishnaSalagrama15 жыл бұрын
Could not find the dataset. Could you please give a dropbox or drive link.
@4.0.45 жыл бұрын
This is great content. It genuinely makes me want to pick RStudio and try to learn data analysis.
@pavanagarwal67535 жыл бұрын
I wonder how mike learned so much if computerphile could give me the book from where we can extend the horizon??
@TeamRomeroJacobs5 жыл бұрын
Hey quick question for anyone out there. I'm failing to see if there's a difference between the principal component 1 and the linear regression. It seems to me they are the same thing. It is my understanding that Btw sorry bad english, not a native speaker.
@ryadbelhakem19445 жыл бұрын
Really not the same but clearly there is a link between both, one could transform pca optimization problem into a special regression using frobenus norm and basic algebra. Performing pca you look for non correlated axis, this is simply not the case for regression.
@pablobiedma4 жыл бұрын
Great video Peter Parker
@BjarkeHellden5 жыл бұрын
Great explanation
@rishidixit793915 күн бұрын
How to project data from an n dimensional space to an m dimensional space. n > m
@passingthetorch58315 жыл бұрын
SVD when? Mike might also consider mentioning SVD approximation for convolutions, neural networks, etc.
@f4614n5 жыл бұрын
If you are using PCA, in all likelihood you were applying SVD at some point (maybe without realizing it).
@pranayyanarp41185 жыл бұрын
What.does ' foggin all ' mean?...at 8.47 time in video
@jfagerstrom5 жыл бұрын
He's saying 'orthogonal', meaning the second principal component is going to be at a 90 degree angle to the first one. Orthogonal is used since it describes this relationship without ambiguity for higher than 2 dimensions as well. It simply means that the two axes are completely uncorrelated.
@pranayyanarp41185 жыл бұрын
@@jfagerstrom u mean he is pronouncing orthogonal as' foggin all" ?... It's in subtitles also
@jfagerstrom5 жыл бұрын
@@pranayyanarp4118 it's just his accent. The person who wrote the subtitles probably heard it the same way you did. He is for sure saying orthogonal though, it's the only thing that makes sense
@pranayyanarp41185 жыл бұрын
@@jfagerstrom thanx man
@isabellabihy86315 жыл бұрын
If I remember multivariate statistics correctly, the name "factor analysis" comes to mind. Indeed, I like PCA better.
@frankietank80194 жыл бұрын
Brilliant, thanks!
@hasan07708162685 жыл бұрын
Well that escalated quickly!
@proprius3 жыл бұрын
brilliant, thanks!
@tear7285 жыл бұрын
What about Exploratory Factor Analysis?
@RAINE____5 жыл бұрын
Thanks for this
@kimiaebrahimi53464 жыл бұрын
amaziiiing
@charlieangkor86493 жыл бұрын
"sponsorship from by Google" - was this piece of English generated by Google's AI?
@willw4096 Жыл бұрын
11:58
@leksa88452 жыл бұрын
i fall in love:D
@Hamromerochannel Жыл бұрын
@ 9:45 starts r
@asifkhaliq90864 жыл бұрын
Dr. Mike can you teach me privately please. . .
@donfeto7636 Жыл бұрын
don't watch the video if you know nothing about pca , come back after you know what is it from StatQuest or other channels
@framm7039 ай бұрын
Cool 😎
5 жыл бұрын
Dude, please use data.table::fread() instead of read.csv() for larger data
@onemanenclave5 жыл бұрын
I agree, dude.
@TheChondriac5 жыл бұрын
Dude
@heyandy8895 жыл бұрын
dude
@pexfmezccle4 жыл бұрын
“Orffogonal”
@brunomartel46394 жыл бұрын
auto-generated subs pleaseeee!!!!!
@DEVSHARMA-zp8xv5 жыл бұрын
It was nice but could have been better and longer if maths were included..