Data Driven Discovery of Dynamical Systems and PDEs

  Рет қаралды 24,776

Nathan Kutz

Nathan Kutz

Күн бұрын

Пікірлер: 15
@nilspin
@nilspin 7 жыл бұрын
Didn't know prof. Kutz had a youtube channel! I took your MOOC Computational Methods for Data analysis in 2013. I didn't finish with good grade, but it really piqued my interest in diff. equations and then dynamical systems. This was an amazing lecture(although it'll need multiple viewings, esp. learning in unobserved low rank modeling and PDE generation) , and I absolutely love your candid style of teaching. I've never gotten so many 'aha' moments in one lecture with any other teacher.
@quantummath
@quantummath 4 жыл бұрын
Lovely! thanks for the presentation Prof. Kutz.
@GBabuu
@GBabuu 5 жыл бұрын
Love the stuff. And you are an excellent Instructor too. Thank u for this post
@sangeeta3844
@sangeeta3844 6 жыл бұрын
Very Informative.
@quantummath
@quantummath 5 жыл бұрын
Great video!
@cjcrowley
@cjcrowley 3 жыл бұрын
Over all, this is a GREAT explanation of many topics in data driven model discovery, but I am confused on a very important step. The notation used at 53:49 is confusing to me. This portion of the discussion is unfortunately sparse on references. Would someone provide a reference to learn more on this approach.
@ranislavir
@ranislavir 4 жыл бұрын
Great lecture
@DaylightDigital
@DaylightDigital 6 жыл бұрын
I think you may have buried the lede with the "I can make moving objects invisible to security cameras" application of DMD (51:09) ;-). Great talk though.
@XMan-iv7ir
@XMan-iv7ir 5 жыл бұрын
excellent
@scottmiller2591
@scottmiller2591 4 жыл бұрын
Ah Ky Keh = Akaike. The ai is pronounced like eye in English, which if you listen closely has 2 sounds to it - an initial ah, and a following ee, but not with the enunciation used in the lecture.
@celestialoutcomes1742
@celestialoutcomes1742 3 жыл бұрын
Can you recommend a text book?
@jsmdnq
@jsmdnq 2 жыл бұрын
Why not build a macro-system that integrates many of the different solving methods in to a unified system. E.g., Something that uses SINDY on compression sensed data to find some the underlying dynamics then use the results as a error correction for a Koopman method. Or some neural network like machine that can select and weight different methods that all can interact in a way that one can train the system to optimize speed and size over many different phenomena which then can be used to solve newer problems faster and more effectively? The idea is to sort of pass different parts of the problem to various "modules" and let them solve them. It may be that you pass lower modes discovered by DMD to SINDY to find the underlying lower mode dynamics while using compression sensing and then "averaging" the two results to get something that might be more effective for discovery of lower dynamics. Then another method can be used for the faster dynamics that is more tuned.
@aidanokeeffe7928
@aidanokeeffe7928 3 жыл бұрын
PDE discovery will do a lot to legitimize ML approaches for more traditionally oriented scientists!
@veritasdude1358
@veritasdude1358 4 жыл бұрын
1:06:03 Belly Scratching Doc :-)) -- kidding, big fan from Europe.
Dynamic Mode Decomposition (Theory)
43:29
Nathan Kutz
Рет қаралды 48 М.
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН
КОНЦЕРТЫ:  2 сезон | 1 выпуск | Камызяки
46:36
ТНТ Смотри еще!
Рет қаралды 3,7 МЛН
«Жат бауыр» телехикаясы І 26-бөлім
52:18
Qazaqstan TV / Қазақстан Ұлттық Арнасы
Рет қаралды 434 М.
Koopman Spectral Analysis (Overview)
27:49
Steve Brunton
Рет қаралды 47 М.
Model Discovery for Dynamical Systems
40:37
Nathan Kutz
Рет қаралды 10 М.
Hankel Alternative View of Koopman (HAVOK) Analysis [FULL]
47:07
Steve Brunton
Рет қаралды 27 М.
Inside the V3 Nazi Super Gun
19:52
Blue Paw Print
Рет қаралды 3,1 МЛН
What if you just keep zooming in?
21:29
Veritasium
Рет қаралды 6 МЛН
6. Monte Carlo Simulation
50:05
MIT OpenCourseWare
Рет қаралды 2,1 МЛН
ROM introduction
28:50
Nathan Kutz
Рет қаралды 31 М.
Koopman Theory + Embeddings
50:05
Nathan Kutz
Рет қаралды 25 М.
Dynamic Mode Decomposition (Overview)
18:18
Steve Brunton
Рет қаралды 94 М.
What's a Tensor?
12:21
Dan Fleisch
Рет қаралды 3,8 МЛН
"Идеальное" преступление
0:39
Кик Брейнс
Рет қаралды 1,4 МЛН