Data Science Project - RFM model

  Рет қаралды 3,685

Karina Data Scientist

Karina Data Scientist

Күн бұрын

Пікірлер: 36
@daviduno2024
@daviduno2024 4 ай бұрын
Lovely project. Hopefully you could expand more on how to deal with the outliers
@karinadatascientist
@karinadatascientist 4 ай бұрын
Sure, good idea!
@VenkatesanVenkat-fd4hg
@VenkatesanVenkat-fd4hg 2 ай бұрын
Awesome share as always....
@karinadatascientist
@karinadatascientist 2 ай бұрын
Thank you so much for watching!
@tarekhusam
@tarekhusam 4 ай бұрын
you are awesome, keep those videos I'm a big fan now!
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you, I appreciate it
@mapletech_22
@mapletech_22 3 ай бұрын
Insightful information 👏
@karinadatascientist
@karinadatascientist 3 ай бұрын
Thank you. Glad to hear that
@jhonfir2235
@jhonfir2235 4 ай бұрын
Nice to Learn from another New Project........!!
@karinadatascientist
@karinadatascientist 4 ай бұрын
Glad you liked it!
@AbouAli01006300091
@AbouAli01006300091 3 күн бұрын
Very well explained @Karina, However I am wondering in both steps: RFM_Segment_Label -->> The Low-Value, Medium-Value, High-Value and later RFM_Customer_Segments --> The Potential Loyal, At Risk Customers, VIP/Loyal, Lost, and Can't Lose How to choose the ranges properly?. Does it have any relation to the quantity of customers found in each RFM_Score? or how ? Thanks a lot!.
@MagysEnglishEduClubbl3rby
@MagysEnglishEduClubbl3rby 4 ай бұрын
Perfect! More videos please:)
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you for your support!
@Emadamx
@Emadamx 4 ай бұрын
You earned a new subscriber 😊, I really enjoyed your video 🤗
@karinadatascientist
@karinadatascientist 4 ай бұрын
Yay! Glad you liked you and thank you for subscribing
@abdiwelly5606
@abdiwelly5606 4 ай бұрын
The materials has been very informative for me , try to put your picture on the top left side of the videos
@karinadatascientist
@karinadatascientist 4 ай бұрын
@@abdiwelly5606 I’ll try that! I am still learning how to edit my videos 😊
@shivamtiwari1766
@shivamtiwari1766 4 ай бұрын
I think very important video for us currently I want to make a project so please create more videos
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you for feedback. More projects to come!
@siddharth4873
@siddharth4873 4 ай бұрын
Can you please do a video on churn and churn prediction?
@karinadatascientist
@karinadatascientist 4 ай бұрын
That's a great idea, thank you
@DeveloaSS
@DeveloaSS 4 ай бұрын
I really like your videos. for when a video for beginners from 0?
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you. I didn't know there was an interest in videos for beginners. I have a masterclass "Data Analysis with Python", it is for complete beginners - karinadatascientist.com/ .
@sachintyagi2003
@sachintyagi2003 4 ай бұрын
! like ur videos! Thnkss!
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you for watching!
@HariPandalai
@HariPandalai 4 ай бұрын
Karina This is very helpful. Your video's have all been extremely educative. Where could I get the Jupyter Notebook. Thanks.
@karinadatascientist
@karinadatascientist 4 ай бұрын
Thank you. If you mean Jupyter Notebook as a software, you can download it here jupyter.org/. If you mean RFM model - you can create it yourself by following the tutorial in this video
@MommysAndHuggysShow
@MommysAndHuggysShow 2 ай бұрын
How can we add segmentation values ​​and rfm values ​​to the same file next to each customer? Can you write an output formula?
@karinadatascientist
@karinadatascientist 2 ай бұрын
you need to save the dataframe, after all those columns were added. All you need to do is: rfm.to_csv('/Users/INDICATE_WHERE_TO_SAVE_FILE/rfm_model.csv', index=False) name_of_what_you_are_saving.to_csv('Path_to_your_file/filename.csv', index = False) You can also save it to excel with rfm.to_excel('filename.xlsx', index=False)
@galinaorlova4236
@galinaorlova4236 4 ай бұрын
Мне тоже плотли нравится 😅
@shajidaameer565
@shajidaameer565 3 ай бұрын
How to write a short description about this project in resume
@karinadatascientist
@karinadatascientist 3 ай бұрын
Developed an RFM (Recency, Frequency, Monetary) model in Python to analyze customer behavior and segment the customer base for targeted marketing strategies. Utilized the pandas library for data manipulation, and plotly for data visualization. The model successfully identified key customer segments and provided actionable insights to improve customer retention and increase revenue.
@hrshtmlng
@hrshtmlng 4 ай бұрын
Why dont you use pyforest!!?
@karinadatascientist
@karinadatascientist 4 ай бұрын
Don't know, a habit? In my videos I want to show people how libraries work, and how to apply this knowledge to other projects. Don't get me wrong, I like that pyforest removes the need of installing libraries one by one. I sometimes use it for my personal quick analysis, but not for tutorials. I think it is great for personal use, not when you work with a team or building a portfolio
@galinaorlova4236
@galinaorlova4236 4 ай бұрын
Здрасти 😀👋
@karinadatascientist
@karinadatascientist 4 ай бұрын
Привет 👋
Data Science Portfolio Project - K-means
27:07
Karina Data Scientist
Рет қаралды 2,3 М.
ТЮРЕМЩИК В БОКСЕ! #shorts
00:58
HARD_MMA
Рет қаралды 2,3 МЛН
Amazing remote control#devil  #lilith #funny #shorts
00:30
Devil Lilith
Рет қаралды 16 МЛН
1, 2, 3, 4, 5, 6, 7, 8, 9 🙈⚽️
00:46
Celine Dept
Рет қаралды 104 МЛН
Day in the Life of a Data Analyst (Work From Home) | *Realistic*
9:05
Coding with Dee
Рет қаралды 147 М.
Data Science Project Demo with Data Scientist Melissa Phillips
10:08
UVA School of Data Science
Рет қаралды 61 М.
Data Science Portfolio Project - Churn prediction model
35:51
Karina Data Scientist
Рет қаралды 3,4 М.
From RAG to Knowledge Assistants
27:29
LlamaIndex
Рет қаралды 24 М.
Ultimate Guide to Polars - Fastest Python Data Science Library!
20:54
Python Simplified
Рет қаралды 13 М.
Top Data Analyst Tools for 2025
12:59
Lore So What
Рет қаралды 2,6 М.
Time series forecasting in ML (ARIMA, Holt-Winters)
27:14
Karina Data Scientist
Рет қаралды 818
Anomaly detection in time series with Python | Data Science with Marco
34:22
Data Science with Marco
Рет қаралды 38 М.