Day 64/75 Era of 1Bit LLM and 1.58Bit LLM [Most Efficient Quantization Technique] GenAI

  Рет қаралды 249

FreeBirds Crew - Data Science and Generative AI

FreeBirds Crew - Data Science and Generative AI

Күн бұрын

Пікірлер: 8
@SimranjeetSingh-n2o
@SimranjeetSingh-n2o 8 ай бұрын
Nice explanation 👏 really helped me a lot
@freebirdscrew2023
@freebirdscrew2023 8 ай бұрын
Thanks a lot
@RekhaRani-cw8wz
@RekhaRani-cw8wz 8 ай бұрын
Very detailed explanation 🚀
@freebirdscrew2023
@freebirdscrew2023 8 ай бұрын
Glad it was helpful!
@theaiinsider7215
@theaiinsider7215 8 ай бұрын
75day hard going hard 🚀😎
@freebirdscrew2023
@freebirdscrew2023 8 ай бұрын
Yeah 🚀❤️
@desertvoyeur
@desertvoyeur 5 ай бұрын
Very helpful and appreciated video! But needs this correction : “does not lose information…”
@freebirdscrew2023
@freebirdscrew2023 5 ай бұрын
Thanks for that!
Day 65/75 LLM Quantization Techniques [GPTQ - AWQ - BitsandBytes NF4] Python | Hugging Face GenAI
11:11
FreeBirds Crew - Data Science and Generative AI
Рет қаралды 806
黑天使只对C罗有感觉#short #angel #clown
00:39
Super Beauty team
Рет қаралды 31 МЛН
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49
What are AI Agents?
12:29
IBM Technology
Рет қаралды 819 М.
RAG vs. Fine Tuning
8:57
IBM Technology
Рет қаралды 79 М.
Prompt Engineering, RAG, and Fine-tuning: Benefits and When to Use
15:21
The Era of 1-bit LLMs by Microsoft | AI Paper Explained
6:10
AI Papers Academy
Рет қаралды 91 М.
Quantization vs Pruning vs Distillation: Optimizing NNs for Inference
19:46
The Era of 1-bit LLMs-All Large Language Models are in 1.58 Bits
17:06
Why Does Diffusion Work Better than Auto-Regression?
20:18
Algorithmic Simplicity
Рет қаралды 395 М.
Large Language Models explained briefly
8:48
3Blue1Brown
Рет қаралды 819 М.