Next time summarize the results in a table in the last of the video. We're busy to watch the whole video.
@billybobandboshow3 жыл бұрын
Thank you for this video! I have been learning about deep learning algorithms over the holiday break! Hope we see more videos from you! I love your channel and content! Keep up the awesome work, happy holidays and happy new year! :)
@GregHogg3 жыл бұрын
You're very welcome and thanks so much for the kind words! Awesome work, happy new year!!
@iftekharanam89806 ай бұрын
That was excellent. Need more videos on DL
@tomaszzielonka9808 Жыл бұрын
@GreggHogg Hi, I got stuck with keras tuner. It seems that code below will only only create the function 'model_builder' once. If I change anything like add Dropout layer and rerun the function it keeps displaying the comment (see below the code), like it was consistenly reaching to the first version of function. Any clues on how to fix that? I would like to experiment with the 'model_builder' function (add/remove layers, dropouts, etc) and then observe what parameters tuner generates. def model_builder(hp) : model = Sequential() hp_activation = hp.Choice('activation', values = ['relu', 'tanh']) hp_layer_1 = hp.Int('layer_1', min_value = 2, max_value = 32, step = 2) hp_layer_2 = hp.Int('layer_2', min_value = 2, max_value = 32, step = 2) hp_learning_rate = hp.Choice('learning_rate', values = [1e-2, 1e-3, 1e-4]) model.add(Dense(units = hp_layer_1, activation = hp_activation)) model.add(Dense(units = hp_layer_2, activation = hp_activation)) model.add(Dense(units = 1, activation = 'sigmoid')) model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate = hp_learning_rate), loss = 'binary_crossentropy', metrics = [tf.keras.metrics.Recall()]) return model tuner = kt.Hyperband(model_builder, objective = kt.Objective("val_recall", direction = "max"), max_epochs = 50, factor = 3, seed = 42) Comment : Reloading Tuner from .\untitled_project\tuner0.json
@tigjuli2 жыл бұрын
Simple explanation, awesome video!
@GregHogg2 жыл бұрын
Thank you!
@rudrathakkar563 жыл бұрын
Thank you . I am learning deep learning .This helped me much
@GregHogg3 жыл бұрын
Perfect - Really glad to hear it!
@arsheyajain70553 жыл бұрын
Awesome video!!
@GregHogg3 жыл бұрын
Thanks a bunch Arsheya! Hope you're having a great holiday break :)
@dakshbhatnagar2 жыл бұрын
Great Video Man but tbh I was actually expecting some sort of automation of the hyperparameter tuning.
@GregHogg2 жыл бұрын
kzbin.info/www/bejne/bH_JYqttprmbiJo
@dakshbhatnagar2 жыл бұрын
@@GregHogg thanks
@prabinbasyal10493 жыл бұрын
Can you suggest data science course? I already read numpy,pandas and matplotlib.
@GregHogg3 жыл бұрын
Awesome! IBM Data science is a great intro. Big big fan of Andrew Ng's deep learning as well.
@haneulkim49022 жыл бұрын
Thanks for an amazing video! Is there way to tune hyperparameters like in sklearn w/o using keras-tuner?
@GregHogg2 жыл бұрын
You're very welcome! I'm sure there is, although I don't believe I've done it before
@tigjuli2 жыл бұрын
yes, there is. you have to define a model as a function and use KerasClassifier from keras as a wrapper to work with sklearn's GridSearch or Ramdomized search. I'm sure there are videos on youtube
@luisalbertoburbano9295 Жыл бұрын
good afternoon, I have a task and I have not been able to create the keras tuner for 5000 rows with 4 columns, in each column the numbers are random from 0 to 9 and I need an output of only 4 numbers this is the code # Initialising the RNN model = Sequential() # Adding the input layer and the LSTM layer model.add(Bidirectional(LSTM(neurons1, input_shape=(window_length, number_of_features), return_sequences=True))) # Adding a first Dropout layer model.add(Dropout(0.2)) # Adding a second LSTM layer model.add(Bidirectional(LSTM(neurons2, input_shape=(window_length, number_of_features), return_sequences=True))) # Adding a second Dropout layer model.add(Dropout(0.2)) # Adding a third LSTM layer model.add(Bidirectional(LSTM(neurons3, input_shape=(window_length, number_of_features), return_sequences=True))) # Adding a fourth LSTM layer model.add(Bidirectional(LSTM(neurons4, input_shape=(window_length, number_of_features), return_sequences=False))) # Adding a fourth Dropout layer model.add(Dropout(0.2)) # Adding the first output layer with ReLU activation function model.add(Dense(output_neurons, activation='relu')) # Adding the last output layer with softmax activation function model.add(Dense(number_of_features, activation='softmax')) Thank you very much
@AllanAlmeidaOficial Жыл бұрын
GPT, Google, Stack Overflow...
@BB-23838 ай бұрын
Side comment - we divide x by 255, because the image is grayscale. An RGB of white is (255,255,255), so we are converting the values upon dividing to (1,1,1), then leaving black as (0,0,0). So, an important note when training images is first convert the images to grayscale.
@GregHogg8 ай бұрын
Yes thank you ☺️
@no-name168Ай бұрын
it has nothing to do with rgb. rgb is 3 channels, grayscale is 1. you scale both to get "normal" value range because apparently model's learning process works better on scaled values. also you do not always convert to grayscale