[DeepBayes2019]: Day 5, Lecture 3. Langevin dynamics for sampling and global optimization

  Рет қаралды 14,798

BayesGroup.ru

BayesGroup.ru

Күн бұрын

Пікірлер: 20
@miladaghajohari2308
@miladaghajohari2308 3 жыл бұрын
great presentation. It gave me a lot of insight especially given the current developments in score-based models and generation with them.
@leonardohuang
@leonardohuang 4 жыл бұрын
Fantastic talk! Clear, informative and vivid.
@Tryndamereization
@Tryndamereization 2 жыл бұрын
Very good presentation. Thank you
@jfndfiunskj5299
@jfndfiunskj5299 4 жыл бұрын
Very good. Well done.
@sayarerdi
@sayarerdi 3 жыл бұрын
Could you also share the codes of your animations?
@qiuhaowang2063
@qiuhaowang2063 4 жыл бұрын
Helpful talk! Thank you . I just don't understand why there is a 'div' in the equation at 16:45. Could you show me some references?
@k_neklyudov
@k_neklyudov 3 жыл бұрын
Remember that div(f) is just a convenient notation for \sum_i df_i/dx_i. If you'll try to take the jacobian of the formula for x' you will end up evaluating the determininant of a large matrix, and there you should see that some terms of this determinant are negligible: o(dt). Thus, in some sense, the diagonal of the matrix (which is 1+df_i/dx_i*dt) plays the main role and, thus, div appears.
@ivanmedri288
@ivanmedri288 2 жыл бұрын
I know it is old post but could you solve this? I am stuck on the same part.
@abhishekmaiti8332
@abhishekmaiti8332 4 жыл бұрын
At 34:01, are \thetas parameters of the model or the sampled data points from a model which is parameterised by \theta?
@k_neklyudov
@k_neklyudov 3 жыл бұрын
thetas are the parameters of the model, which could be a regression or a classifier in this case. hence, here we sample the parameters of a model (say weights of linear regression), and then we should average the predictions over all these sampled parameterrs.
@abhishekmaiti8332
@abhishekmaiti8332 3 жыл бұрын
@@k_neklyudov I see, thanks a lot for the clarification.
@nadineca3325
@nadineca3325 4 жыл бұрын
Thank you for this informative discussion and amazing presentation!
@PradeepBanerjeeKr
@PradeepBanerjeeKr 4 жыл бұрын
Simply super!
@hakiim.jamaluddin
@hakiim.jamaluddin 3 жыл бұрын
Super clear, thanks!
@MrDudugeda2
@MrDudugeda2 4 жыл бұрын
great talk!
@해위잉
@해위잉 7 ай бұрын
Fantastic,,,, i want to go samsung
@umountable
@umountable 4 жыл бұрын
Maybe its useful to motivate a little more before showing only slides packed with equations for half an hour straight
@MNasirAziz
@MNasirAziz 4 жыл бұрын
I understand you. But you can look who he uses final derived equation by just skipping derivation.
@k_neklyudov
@k_neklyudov 4 жыл бұрын
Hi Stefan! Thanks a lot for your feedback! I totally agree that this talk taking separately lacks motivation and practical examples. The reason is that this talk was designed as a part of Day 5, which is about MCMC. You can also find the discussion of the Langevin dynamics in this talk kzbin.info/www/bejne/h5ClmmV-brN-sMU.
@GenerativeDiffusionModel_AI_ML
@GenerativeDiffusionModel_AI_ML Жыл бұрын
very good talk!
On Langevin Dynamics in Machine Learning - Michael I. Jordan
1:19:47
Institute for Advanced Study
Рет қаралды 14 М.
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,8 МЛН
Quando eu quero Sushi (sem desperdiçar) 🍣
00:26
Los Wagners
Рет қаралды 15 МЛН
IL'HAN - Qalqam | Official Music Video
03:17
Ilhan Ihsanov
Рет қаралды 651 М.
23. Accelerating Gradient Descent (Use Momentum)
49:02
MIT OpenCourseWare
Рет қаралды 52 М.
6. Monte Carlo Simulation
50:05
MIT OpenCourseWare
Рет қаралды 2,1 МЛН
Mod-01 Lec-12 Langevin dynamics (Part 1)
57:53
nptelhrd
Рет қаралды 17 М.
The intuition behind the Hamiltonian Monte Carlo algorithm
32:09
Ben Lambert
Рет қаралды 60 М.
Stanford EE364A Convex Optimization I Stephen Boyd I 2023 I Lecture 3
1:20:28
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
Diffusion and Score-Based Generative Models
1:32:01
MITCBMM
Рет қаралды 84 М.
The promises and pitfalls of Stochastic Gradient Langevin Dynamics - Eric Moulines
51:46
BAYGUYSTAN | 1 СЕРИЯ | bayGUYS
36:55
bayGUYS
Рет қаралды 1,8 МЛН