Derivation of the Heat Diffusion Equation (1D) using Finite Volume Method

  Рет қаралды 31,171

Kody Powell

Kody Powell

Күн бұрын

Пікірлер
@The_Aawara_pahadi
@The_Aawara_pahadi 3 жыл бұрын
thank-you sir can you tell me that when we take boundary conditions as t(0,t)=20degree and t(L,t)=60degree in finite difference method and if we are solving it by any explicit method so how do we specify the initial temperature conditions at the middle nodes[(0
@harryy.8527
@harryy.8527 7 жыл бұрын
I appreciate your job, I would like if you could show dimensionless in 1D and 2D about heat Diffusion
@justingriffin4477
@justingriffin4477 6 жыл бұрын
When you write the equation in its final form, shouldn't it be dT/dt = alpha d^2T/dx^2? Instead you wrote dT/dx, was this a mistake or am I missing something?
@MFedoseyev
@MFedoseyev 6 жыл бұрын
You are right, Justin. The equation should look exactly like you said
@sahildhamale1457
@sahildhamale1457 4 жыл бұрын
@Kody Powell It does seems to me like Finite Difference Method. Can you correct me? please
@docteurkhatir236
@docteurkhatir236 3 жыл бұрын
Yes, this is not VFM. It is the Finite difference method
@kosirjure8
@kosirjure8 5 жыл бұрын
Would equation be different if the temperature gradient would flow in the -x?
@suryakarla8628
@suryakarla8628 5 жыл бұрын
Is this the finite difference method ?
@docteurkhatir236
@docteurkhatir236 3 жыл бұрын
This is not VFM. It is the Finite difference method.
@joncutrim7132
@joncutrim7132 2 жыл бұрын
thank you
Solving the Heat Diffusion Equation (1D PDE) in Matlab
24:39
Kody Powell
Рет қаралды 137 М.
[CFD] The Finite Volume Method in CFD
24:17
Fluid Mechanics 101
Рет қаралды 139 М.
Oxford Calculus: Heat Equation Derivation
25:20
Tom Rocks Maths
Рет қаралды 60 М.
Solving the Heat Diffusion Equation (1D PDE) in Python
25:42
Kody Powell
Рет қаралды 74 М.
Finite Volume Method in CFD: A Thorough Introduction
1:15:00
Applied Computational Fluid Dynamics
Рет қаралды 16 М.
Solving the heat equation | DE3
14:13
3Blue1Brown
Рет қаралды 1,3 МЛН
General Heat Conduction Equation in Cartesian Coordinates
30:01
Sampurna Engineering
Рет қаралды 183 М.