Detecting Anomalies Using Statistical Distances | SciPy 2018 | Charles Masson

  Рет қаралды 35,861

Enthought

Enthought

Күн бұрын

Пікірлер: 17
@arshamafsardeir2692
@arshamafsardeir2692 2 жыл бұрын
The best explanation of Statistical Distances that I have found. Easy and nice explanation of Kolmogrov-Smirinov, Wasserstein distance, and KL-divergence.
@mathman2170
@mathman2170 2 жыл бұрын
Love it when a talk presents the material in a carefully developed, logical, manner. Merci!
@kimmupfumira3417
@kimmupfumira3417 3 жыл бұрын
Great explanation! Easy to digest.
@jamesmckeown4743
@jamesmckeown4743 5 жыл бұрын
17:13 there should be a negative in the definition of KL
@Mayur7Garg
@Mayur7Garg 3 жыл бұрын
I think the negative should be based on whether you are minimizing or maximizing it. By definition, distances are always positive.
@MauricioSalazare
@MauricioSalazare 6 жыл бұрын
Well done! Nice explanation!
@nmertsch8725
@nmertsch8725 5 жыл бұрын
This is a great presentation! Is there a reason why you did not commit the nth Wasserstein distance to SciPy?
@canmetan670
@canmetan670 5 жыл бұрын
docs.scipy.org/doc/scipy/reference/generated/scipy.stats.wasserstein_distance.html As of this date, latest stable version of scipy is 1.3.1 on pip. This has been allegedly available after 1.0.0
@TheBjjninja
@TheBjjninja 5 жыл бұрын
6:15 we should either reject or fail to reject H0 i believe. Instead of “accept H0”
@harry8175ritchie
@harry8175ritchie 5 жыл бұрын
AKA accept. I think it depends on where you learn statistics. My professors always said accept and reject.
@mikhaeldito
@mikhaeldito 4 жыл бұрын
Semantically, "accepting H0" and "failing to reject H0" are the same. But they are not! P-value is a measure of the probability of our data assuming that the null hypothesis (such as no difference between two groups) is true. So, it is a measure against the null, not in favour of the null. This is why we have a statistical test of no difference, or similarity, that is called equivalence tests.
@joelwillis2043
@joelwillis2043 3 жыл бұрын
@@harry8175ritchie AKA NO. You can't conclude your assumption based on your assumption. This is like logic 101. HARD FAIL GO DRIVE A TRUCK FOR LIVING.
@harry8175ritchie
@harry8175ritchie 3 жыл бұрын
Not the way to handle it buddy.
@minesinitiativesrussie1778
@minesinitiativesrussie1778 5 жыл бұрын
T'es le meilleur fillot ! J'ai rien compris mais c'est quand même la classe !
@nomcognom2332
@nomcognom2332 6 жыл бұрын
Good!
@112ffhgffg12
@112ffhgffg12 2 жыл бұрын
Thanks
@jesuse4691
@jesuse4691 4 жыл бұрын
G
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
Anomaly Detection 101 - Elizabeth (Betsy) Nichols Ph.D.
29:38
DevOpsDays Silicon Valley
Рет қаралды 38 М.
Two Effective Algorithms for Time Series Forecasting
14:20
Eamonn Keogh - Finding Approximately Repeated Patterns in Time Series
1:08:17
Data Intelligence Institute of Paris
Рет қаралды 13 М.
Anomaly Detection: Algorithms, Explanations, Applications
1:26:56
Microsoft Research
Рет қаралды 96 М.
A Bluffer's Guide to Dimension Reduction - Leland McInnes
36:33
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН