Really great video. I watched this after reading chapter 2.4 of Guillemin & Haine, feeling a little shaky on my exterior algebra, and this really blew it all open for me.
@rafaelgomezgonzalez4004 жыл бұрын
I love this topic, thanks a lot for the effort and clarity in your explanations
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐
@WillHobkirk4 ай бұрын
This series is awesome and exactly what I needed. I'm watching the whole thing back to back.
@yulflip3 жыл бұрын
Typo: Should we not see omega: (T_p R^n)^m -> R on the first board?
@Matias-sc2or3 жыл бұрын
This proposition can be proved using mathematical induction, applying Leibniz rule (hope it is mentioned in one of previous videos. Assume this proposition is true for all forms with order less than or equal to m. Let A be a m+1 form. Split it into a wedge product of two forms A = A1^A2 and calculate dd(A) = dd(A1^A2), using Leibniz rule, and the result is 0.
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@golden_smaugАй бұрын
I love you, Michael Penn
@goodplacetostop29734 жыл бұрын
16:24
@leonardosaads4 жыл бұрын
Dude, did you create the channel to signal the moments he says that? lol kkkkkk
@stenarsk68774 жыл бұрын
@@leonardosaads lmao
@scottstirling8044 жыл бұрын
So this may be a pedantic thing but if you instead wrote the two form, that you calculated the exterior derivative of at the end, as w=Fdy^dz+Gdz^dx+Hdx^dy when you calculate the exterior derivative you get dw=( F_x+G_y+H_z)dx^dy^dz and you can more easily see that the exterior derivative on two forms is not so secretly the divergence of a vector field. I haven't checked if a similar issue appears when you calculate the exterior derivative of the 1-form. Someone feel free to correct me if I am wrong.
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@Zxv9753 жыл бұрын
This is a good observation. That errant minus sign bothered me a tad, so it's good that it's so easy to explain where it comes from and how to fix it. The exterior derivative of the 1 form does have the same issue. The curl of a vector would have the second term (the dx^dz term with dy omitted) as the negative of what's shown here.
@shuewingtam62102 жыл бұрын
The minus sign of G term in three form is due to the fact that he used dx^dz instead of dz^dx in the two form expression.
@dmitryempollon43844 жыл бұрын
Dear Michael, thank you for your truly great work (I am a math educator as well)! What's behind the "limited access" videos in the differential forms playlist? Are they placeholders for the future videos?
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@byronwatkins25653 жыл бұрын
??? Now I know that a 0-form is a function (possibly of several parameters). "On R^n" leads me to suspect that f() is a vector with n components. I still have no idea what a 1-form is or why it is different from a 0-form, so you might imagine how much I got out of the rest. The wedge products seem to imply Clifford's Geometric Algebra. I could probably put this to use if I understood any of it...
@nahblue11 ай бұрын
Check out the playlist this video is part of, it has a good starting video.
@jaimemat33 жыл бұрын
Gracias por compartir el video, Buena explicación!
@GregShyBoy3 жыл бұрын
13:22 It feels like this notation should collapse into some kind of determinant
@GregShyBoy3 жыл бұрын
det([[-dx^dy, dy^dz, dx^dz], [h, f, g], [d/dz, d/dx, d/dy]]) (last line is nabla operator) I'm still quite unhappy with the minus sign next to dx^dy term, but whatever :-)
@Noam_.Menashe2 жыл бұрын
@@GregShyBoy It very much so looks like the curl...
@no-one-in-particular11 ай бұрын
@@GregShyBoy You can move the minus to the dx^dz and turn it round to make dz^dx
@ChessJourneywithMe Жыл бұрын
Its not zero because its anti commutative, Anti commutative means (dx^dy) = -(dy^dx) That is wedge products Nilpotent property
@oni833711 ай бұрын
Anticommutativity implies that the exterior product of an elementary one-form with itself is indeed equal to zero. Watch his video on "The geometry of multiplying 1-forms". He addresses this as a corollary of anticommutativity.
@xinpingdonohoe39784 ай бұрын
(dx^dx) = -(dx^dx) Only t=0 satisfies t=-t
@raghavsomani19954 жыл бұрын
How do you make it so easy to understand?!
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@senhorkorracha4 жыл бұрын
So, are Lie derivatives just an early form of exterior calculus?
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@depressedguy94672 жыл бұрын
Please tell me is this the same covariante derivative
@xshortguy4 жыл бұрын
Cool. Now can we define this in terms of tensors :)
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@rubenpartono2 жыл бұрын
Is this part of a longer series?
@simpleprogrammingcodes2 жыл бұрын
yes, Differential Forms
@aidansgarlato93474 жыл бұрын
Is the alternating linear map from the cotangent space not the tangent space
@beoptimistic58533 жыл бұрын
kzbin.info/www/bejne/joKsk6FobMmCoKc 💐💐
@Zxv9753 жыл бұрын
What do you mean by alternating linear map? Alternating implies w(u, v) = -w(v, u) which is at least bilinear. Did you mean multilinear map? Or perhaps just meant linear map (not necessarily alternating). In the latter case the answer is that it is, but your wording needs to be corrected slightly. The set of linear maps from the cotangent space to R is naturally isomorphic to the tangent space, aka the dual of the cotangent space is the tangent space. Alternatively, you also have the set of pseudovectors/bivectors, which are differential n-1 forms. The wedge product between 1 forms and n-1 forms generates n forms, which are oriented functions. This might be what you're referring to by "alternating", as dx_i∧d_I = (-1)^(n-1)dx_I∧dx_i is similar in nature.