298 - What is k fold cross validation?

  Рет қаралды 10,478

DigitalSreeni

DigitalSreeni

Күн бұрын

Пікірлер: 18
@newcooldiscoveries5711
@newcooldiscoveries5711 2 жыл бұрын
That was very informative. You have both depth of knowledge and a gift for teaching. Thanks.
@ausialfrai3335
@ausialfrai3335 Жыл бұрын
Thank you Sreeni for all of your great videos. I have a suggestion, since the start of the channel we we have been learning the different ML/DL algorithms and their applications using images. Can you please consider making a series on how to apply them on biomedical signals ? Thank you
@Xiaoxiaoxiaomao
@Xiaoxiaoxiaomao Жыл бұрын
🎉🎉🎉
@vidyasvidhyalaya
@vidyasvidhyalaya 2 жыл бұрын
Super sir 👍 eagerly waiting for the coding section
@bitugmasamuel1797
@bitugmasamuel1797 Жыл бұрын
Please make video on ensemble model on deep learning, where you will need to compile and the out of base models for the ensemble model
@luthfanhabibi
@luthfanhabibi 2 жыл бұрын
Really informative video as I now also learning more about the cross validation. One question, so after doing the cross validation, how we should develop/train the final model?
@DigitalSreeni
@DigitalSreeni 2 жыл бұрын
Please wait for future videos, they may answer your question.
@Nishant8185
@Nishant8185 2 жыл бұрын
Love your content. Please keep it coming. I have a few doubts and would appreciate @DigitalSreeni/communities thoughts. 1) Don't you think that any preprocessing should be happening within the loop of cv (@ 13.35) to avoid data leakage. Essentially in the loop (say for 5 fold cv) 4 folds are for training and 5th fold for testing. If you normalized/scaled data outside the loop - this should constitute data leakage, right? 2) where to encode categorical features - before split, after split or within for loop? 3) when we want to get the final model for production - we consider the entire data (train + test). All the preprocessing that we have done while doing cv will be executed on this entire dataset, right? i.e. if standardization was used while performing cv now for the final model and for future data preprocessing the mean and standard deviation will come from this (train + test) data, correct?
@vidyasvidhyalaya
@vidyasvidhyalaya 2 жыл бұрын
Sir....can you please upload a separate video related to FEATURE EXTRACTION USING "SURF" Algorithm for image classification?
@DataAnalytics2486
@DataAnalytics2486 8 ай бұрын
Thanks Screeni! I wanna ask if we should removal outliers before split or after the split/cv?
@kaadelaa
@kaadelaa 3 ай бұрын
amazing🤩
@trapbushali542
@trapbushali542 Жыл бұрын
u the GOAT !!!.... up there with Tom Brady and MJ
@RoyAAD
@RoyAAD Жыл бұрын
Great videos
@MovieTheater69
@MovieTheater69 Жыл бұрын
Thank you very much
@wg2
@wg2 2 жыл бұрын
scaling before splitting oops, I think I have made that mistake more than once. 😅
@DigitalSreeni
@DigitalSreeni 2 жыл бұрын
Me too - all the time in my tutorials.
@Алг-ж3д
@Алг-ж3д Жыл бұрын
Awesome thanks 😊
@maryamshirazifard7034
@maryamshirazifard7034 8 ай бұрын
Perfect
Machine Learning Tutorial Python 12 - K Fold Cross Validation
25:20
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Beat Ronaldo, Win $1,000,000
22:45
MrBeast
Рет қаралды 158 МЛН
So Cute 🥰 who is better?
00:15
dednahype
Рет қаралды 19 МЛН
Machine Learning and Cross-Validation
7:40
Steve Brunton
Рет қаралды 35 М.
Cross Validation : Data Science Concepts
10:12
ritvikmath
Рет қаралды 40 М.
Machine Learning Fundamentals: Cross Validation
6:05
StatQuest with Josh Starmer
Рет қаралды 1,2 МЛН
301 - Evaluating keras model using KFold cross validation​
33:32
DigitalSreeni
Рет қаралды 11 М.
GraphRAG: The Marriage of Knowledge Graphs and RAG: Emil Eifrem
19:15
Complete Guide to Cross Validation
29:49
Rob Mulla
Рет қаралды 60 М.
Visualizing transformers and attention | Talk for TNG Big Tech Day '24
57:45
290 - Deep Learning based edge detection using HED
19:35
DigitalSreeni
Рет қаралды 14 М.
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН