162 - An introduction to time series forecasting - Part 2 Exploring data using python

  Рет қаралды 19,352

DigitalSreeni

DigitalSreeni

Күн бұрын

Пікірлер: 35
@juanpablomuniesaprados374
@juanpablomuniesaprados374 2 жыл бұрын
Congratulations on the magnificent work!! Perfect balance between depth and relevance of each topic. Proper language and impeccable timing! It was a pleasure to follow your class!!
@awaisahmad5908
@awaisahmad5908 Жыл бұрын
The best teacher. Everything i have learned from you. My University had never provided my any content or any help. Thank You !
@DigitalSreeni
@DigitalSreeni Жыл бұрын
Happy to hear that!
@krishraj5014
@krishraj5014 9 ай бұрын
Thank you so much for conveying this topic in so much detail. I had been struggling with Time series forecasting for a while now. However, coming across your tutorials has been amazing and I am able to catch on very efficiently. God bless you sir
@carrocesta
@carrocesta Жыл бұрын
Sir, you are a really good teacher. I am spaniard and I really understand everything you explain in here, very rare regarding neural networks. Thanks dude.
@D.2023
@D.2023 2 жыл бұрын
I am thrown into a bachelor project about times series forecasting, and all I have is introductionary ML course, mediocre descrete math and statistsics results with 1/2 intro-kalkulus course. Time-series forcasting is a major leap from 2-layered perceptron and linear regression, and some intro classification models... This stuff looks like to be my guiding light XD I actually understand what you say, and even if the math stuff kicks in - you throw in enough keypoint refference words for me to side-google the lacking understanding from somewhere else. So thrilled to discover your chanell, Thank You!
@BharathSaiS
@BharathSaiS 2 жыл бұрын
This is the content I love to watch! Neat and crisp :)
@lomash_irl
@lomash_irl 3 ай бұрын
This is a wonderful lecture, I found this relevant for climate data I was afraid all the data I have was white noise but applied statsmodels and found the decomposition helpful... For all those reading this comment, please suggest books or other relevant material I can read/learn to apply time series analysis on tropical cyclones Thank you Sreeni for being a great educator for us
@kailashj2145
@kailashj2145 3 жыл бұрын
Great explanation sir,thankful I found this channel
@aqilahrose
@aqilahrose 4 жыл бұрын
Omg, this is the great video I ever need. Would you mind if you can make it for multivariate time series forecasting using deep learning? (with lots of features or column).. look forward to this kind of topic from you!
@nightline9868
@nightline9868 Жыл бұрын
He dit exactly that
@SmartPhone-tv4qi
@SmartPhone-tv4qi 3 жыл бұрын
Awesome work , explained everything in single detail ,even why to use dark background! Look forward for more videos.
@DigitalSreeni
@DigitalSreeni 3 жыл бұрын
Thanks a lot 😊
@tokiniainavictoriotrandria2028
@tokiniainavictoriotrandria2028 11 ай бұрын
thank you for the Video Sir, it was exactly what i needed, you're amazing
@TravelIsLove-22
@TravelIsLove-22 3 жыл бұрын
HI Sreeni, thanks a lot for the nice videos :) one question: in the step that you can the decomposed on the df, I get an error saying that I need to have a Datetime object with Frequency...it seems that I should assign frequency to df via df = df.asfreq('d'), how come that you didn't assign the frequency but the code works for you...
@SAINIVEDH
@SAINIVEDH 4 жыл бұрын
Thanks for the tutorial and How are you saying confidence intervals from the plot at 17:00 ?!!
@Techog4Sale
@Techog4Sale 7 ай бұрын
i spend my 3 days on arima but unable to get the main point, finally i come here and get the all relevant info....
@aparnashrivastava5837
@aparnashrivastava5837 2 жыл бұрын
Great video sir, Thank you so much
@DigitalSreeni
@DigitalSreeni 2 жыл бұрын
Glad you liked it
@5112vivek
@5112vivek 2 жыл бұрын
Thanks Sreeni, Quick question, in ADF Test instead of looking at the p-value, for rejection, do we not look at the critical values. My understanding is that the asymptotics are different here, hence the critical values are provided by the ADF test separately. Thanks
@aminabouhali5944
@aminabouhali5944 Жыл бұрын
Finally Ican understand easily
@khairulfahim
@khairulfahim 2 жыл бұрын
You are just awesome
@МихаилСыч-л4с
@МихаилСыч-л4с 2 жыл бұрын
Лучший
@iftikhar58
@iftikhar58 2 жыл бұрын
thank you so much brother!!!!!
@tchintchie
@tchintchie 4 жыл бұрын
great video as always. you could also very easily parse the dates when importing: pd.read_csv("/kaggle/input/air-passengers/AirPassengers.csv", parse_dates=["Month"]) if you know the date-column´s name
@DigitalSreeni
@DigitalSreeni 4 жыл бұрын
Thanks for the tip. Yes, once you feel comfortable with Pandas you can minimize the number of steps.
@alteshaus3149
@alteshaus3149 3 жыл бұрын
Nice video sir
@aminabouhali5944
@aminabouhali5944 Жыл бұрын
Thank you so much sir
@ngyuentru8117
@ngyuentru8117 3 жыл бұрын
What is lag? Is it just as its name suggests or is it a key term that means something else?
@sumitmandal6676
@sumitmandal6676 3 жыл бұрын
you can use " decomposed.plot() " instead of " plt.figure(figsize=(12,8)) plt.subplot(411) plt.plot(df['Passengers'], label='Original', color='yellow') plt.legend(loc='upper left') plt.subplot(412) plt.plot(trend, label='Trend', color='yellow') plt.legend(loc='upper left') plt.subplot(413) plt.plot(seasonal, label='Seasonal', color='yellow') plt.legend(loc='upper left') plt.subplot(414) plt.plot(residual, label='Residual', color='yellow') plt.legend(loc='upper left') plt.show() ". Though the one he taught is the best.
@DigitalSreeni
@DigitalSreeni 3 жыл бұрын
Thank you very much for the suggestion.
@alamintalukder9950
@alamintalukder9950 Жыл бұрын
thanks a lot ❤
@kotraner
@kotraner 3 жыл бұрын
have to change adf, pvalue, usedlag_, nobs_, critical_values_, icbest_ = adfuller(df['#Passengers']) to prevent from invoking error.
@u.fashion
@u.fashion 2 жыл бұрын
15:14
161 - An introduction to time series forecasting - Part 1
12:58
DigitalSreeni
Рет қаралды 35 М.
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49
Что-что Мурсдей говорит? 💭 #симбочка #симба #мурсдей
00:19
Cat mode and a glass of water #family #humor #fun
00:22
Kotiki_Z
Рет қаралды 18 МЛН
Support each other🤝
00:31
ISSEI / いっせい
Рет қаралды 53 МЛН
ACF & PACF Code Example : Time Series Talk
11:36
ritvikmath
Рет қаралды 110 М.
Time Series Forecasting Example in RStudio
37:53
Adam Check
Рет қаралды 144 М.
166 - An introduction to time series forecasting - Part 5 Using LSTM
23:42
Polynomial Regression in Python
20:18
NeuralNine
Рет қаралды 49 М.
Time Series Forecasting with PyCaret
23:32
Databricks
Рет қаралды 15 М.
All Learning Algorithms Explained in 14 Minutes
14:10
CinemaGuess
Рет қаралды 281 М.
181 - Multivariate time series forecasting using LSTM
22:40
DigitalSreeni
Рет қаралды 288 М.
УДИВИЛ ВСЕХ СВОИМ УХОДОМ!😳 #shorts
00:49