Direct Solution for Estimating the Fundamental and Essential Matrix (Cyrill Stachniss)

  Рет қаралды 21,419

Cyrill Stachniss

Cyrill Stachniss

Күн бұрын

Пікірлер: 30
@vivekbagaria3759
@vivekbagaria3759 Жыл бұрын
Each lecture is worth millions of $! Thanks for the lecture professor!
@davidfriesen9625
@davidfriesen9625 Жыл бұрын
This is great! Finally something worth watching on KZbin. I'm trying to teach myself SLAM and structure from motion. I have a pet peeve though: worse than fingernails on a chalkboard, is a lecturer who says "equals to", which is easily confused for "equals two". English grammar dictates "is equal to zero" or "equals zero" but never "equals to zero", unless you want a note taker to write " = 2 0 "
@MatyyRdk
@MatyyRdk 4 жыл бұрын
I like your style of teaching. One can get to know all the details, but don't get lost in between because you explain all the steps and keep repeating the important points. Thanks for making these!
@medhyvinceslas4151
@medhyvinceslas4151 3 жыл бұрын
Thank you Cyrill. Always a pleasure to learn from your Channel.
@ioannapanagiotidou7394
@ioannapanagiotidou7394 2 жыл бұрын
amazing work. thanks for sharing
@RaigyoEcU
@RaigyoEcU 3 жыл бұрын
always very helpful, reading Multiple View Geometry and then watching your lectures help so much understanding all the concepts of epipolar geometry
@aminfadaei4056
@aminfadaei4056 3 жыл бұрын
great lecture thank you so much, your lectures are helping me a lot this semester
@sheno4064
@sheno4064 2 жыл бұрын
Thank you for this series of lectures; it's conducive!
@jeffabc1997
@jeffabc1997 2 жыл бұрын
incredible lecture. thank you so much!
@molosist
@molosist 9 ай бұрын
Great lecture! A small note: in the slide that appears on 14:18 "regular" means invertible/nonsingular (it might cause some confusion)
@Henqi
@Henqi 3 жыл бұрын
Thank you for an informative lecture! Helped me a lot when doing my exercise!
@johnl4885
@johnl4885 Жыл бұрын
Excellent video. If S is the unknown skew and R is the rotation matrix, would another path to an answer be given by, EE' = S^2 then set S = sqrt(-EE')? Of course the sqrt would have +/- on the first two eigenvalues going with the SVD route, also requiring a test for acceptable lines of sight.
@abdelrahmanwaelhelaly1871
@abdelrahmanwaelhelaly1871 3 жыл бұрын
in what coordinates is R and T given in? so if T is [1,1,1] is it 1 pixel or 1m or 1 cm or one focal length unit
@alanjohnstone8766
@alanjohnstone8766 3 жыл бұрын
A great series of lectures. Could you tell me how to detect zero or very small translation and then how to estimate the rotation separately. Thanks
@a1k0n
@a1k0n 4 жыл бұрын
38:38 As far as preconditioning for estimating the essential matrix -- would it suffice to instead just divide your x' and x'' coordinates through by their z coordinates (labeled as c' and c'' in your slide at 34:30), so that they are [x y 1] vectors? x and y would be limited by the tangent of the field of view in that case.
@CyrillStachniss
@CyrillStachniss 4 жыл бұрын
You are working in the camera coordinate frame here and the distance between the projection center and the image plane are the camera constants c' and c''.
@medhyvinceslas4151
@medhyvinceslas4151 3 жыл бұрын
Is it correct to say that the epipole can be found simply by taking the point resulting of the intersection of 2 random epipolar lines ?
@aliberatcetin6765
@aliberatcetin6765 2 жыл бұрын
great.....
@hetshah7490
@hetshah7490 2 жыл бұрын
amazing video for Fundamental and Essential Matrix. I was trying to clear this topics from 2 consecutive days and finally your video provided the clarity. I also have one question; that after finding the epipolar line for the point; how can we search on that epipolar line and find the exact point ? If you have any materials or implementations; please share how to connect to them. Again, Thank You.
@CyrillStachniss
@CyrillStachniss 2 жыл бұрын
Search along the line for pixel similarity, eg via normalized cross correlation. You may check my photogrammetry 1 lecture on cross correlation to get some insights.
@ThomasDeegancool
@ThomasDeegancool 3 жыл бұрын
Why do we use SVD instead of least squares to solve Af = 0?
@shadowlegion3115
@shadowlegion3115 3 жыл бұрын
That's also what Im thinking about. Any clues?
@inbb510
@inbb510 3 жыл бұрын
It is because the least squares solution is very sensitive to noise, something which is present in all photos. It is a very ill-conditioned solution. If you still want to use least squares, doing a Tikhonov regularisation will get around this problem.
@이상하-u6g
@이상하-u6g 3 жыл бұрын
I think SVD can be kind of least square solution! It is because the last row vector of Vt makes it the minimum value.
@sansonisebastian233
@sansonisebastian233 2 жыл бұрын
Is the same solution but i guess that is because you need apply a restriction of rank(F)=2. In the book called: "Multiple view geometry in computer vision" by Hartley and Zisserman, 2nd edition, there are another explanations of this problem. In particular take a look in page 280 before of "11.1.1 The singularity constraint".
@AndreiChegurovRobotics
@AndreiChegurovRobotics Жыл бұрын
As always great lecture! Could not figure out why Fundamental Matrix shall be rank=2? (kzbin.info/www/bejne/sImYf5iPYqyHhZI)
@CyrillStachniss
@CyrillStachniss Жыл бұрын
F must have a rank deficiency in order to formulate the coplanarity constraint, which is x^t F x = 0
@CyrillStachniss
@CyrillStachniss Жыл бұрын
A more formal reason: the definition of F contains a matrix product involving a skew symmetric matrix (which is of rank 2) and thus the overall product is of rank 2
@AndreiChegurovRobotics
@AndreiChegurovRobotics Жыл бұрын
@@CyrillStachniss Thank you Professor
Iterative Solution for Estimating the Relative Orientation (Cyrill Stachniss)
1:13:25
Relative Orientation, Fundamental and Essential Matrix (Cyrill Stachniss)
59:50
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 9 МЛН
МЕНЯ УКУСИЛ ПАУК #shorts
00:23
Паша Осадчий
Рет қаралды 4,6 МЛН
КОГДА К БАТЕ ПРИШЕЛ ДРУГ😂#shorts
00:59
BATEK_OFFICIAL
Рет қаралды 8 МЛН
Человек паук уже не тот
00:32
Miracle
Рет қаралды 4,4 МЛН
Lecture 8: Norms of Vectors and Matrices
49:21
MIT OpenCourseWare
Рет қаралды 161 М.
Essential and Fundamental Matrices
28:00
Robo Code Insights
Рет қаралды 16 М.
Least Squares - An Informal Introduction (Cyrill Stachniss)
1:01:09
Cyrill Stachniss
Рет қаралды 17 М.
RANSAC - Random Sample Consensus (Cyrill Stachniss)
25:51
Cyrill Stachniss
Рет қаралды 29 М.
The Basics about Bundle Adjustment (Cyrill Stachniss)
1:23:12
Cyrill Stachniss
Рет қаралды 30 М.
Why 4d geometry makes me sad
29:42
3Blue1Brown
Рет қаралды 882 М.
Lecture 13 - Fundamental Matrix - 2014
1:31:30
UCF CRCV
Рет қаралды 26 М.
Terence Tao at IMO 2024: AI and Mathematics
57:24
AIMO Prize
Рет қаралды 608 М.
Epipolar Geometry Basics (Cyrill Stachniss)
24:35
Cyrill Stachniss
Рет қаралды 19 М.
The Strange Physics Principle That Shapes Reality
32:44
Veritasium
Рет қаралды 6 МЛН
бабл ти гель для душа // Eva mash
01:00
EVA mash
Рет қаралды 9 МЛН