[Discrete Mathematics] Euler Circuits and Euler Trails

  Рет қаралды 103,272

TrevTutor

TrevTutor

Күн бұрын

Пікірлер: 29
@emir350z
@emir350z 7 жыл бұрын
Sick channel, dudeee. Saved my discrete course.
@mistersir3185
@mistersir3185 7 жыл бұрын
man you cracked me up so hard at 24:41. "we fuc* low"
@Trevtutor
@Trevtutor 7 жыл бұрын
Duuude what even is up with the audio at that part.
@maycodes
@maycodes 3 жыл бұрын
THank you so much, I was doing graph in computer science, got much clarity
@kasunsampathadhikari6833
@kasunsampathadhikari6833 6 жыл бұрын
you saved my degree thanks lot
@shubhamrautela7655
@shubhamrautela7655 5 жыл бұрын
lol
@Sspectator
@Sspectator 4 жыл бұрын
Theorem: If the sum of degrees is even in a graph, and it is connected it is an Euler Circuit. Axiom 1: If the sum of degrees is even in a graph, removing a circuit removes an even amount of degrees. Axiom 2: If the sum of degrees is even in a graph, subgraphs are even and connected. Axiom 3: If the sum of degrees is even in a graph, and it is connected, a circuit can be formed, not necessarily an Euler Circuit. Axiom 4: Removing a subgraph that is a circuit removes an even amount of degrees from the degree sum of the graph. Axiom 5: An Euler Circuit has even degrees and is connected. IH: Assume the theorem has been proven for all graphs with n
@emperor8716
@emperor8716 11 ай бұрын
23:10 that is a beautiful graph
@phanuelmancho1797
@phanuelmancho1797 Жыл бұрын
Thank you
@mohitjha2686
@mohitjha2686 2 жыл бұрын
Euler Circuit can work for disconnected graphs if all the edges are in same component.
@zainabqureshi5744
@zainabqureshi5744 Жыл бұрын
can you make a video on hamilton paths and circuits
@eldarguliyev1209
@eldarguliyev1209 5 жыл бұрын
What textbook are you talking about?Which one would you suggest?
@Ribs351
@Ribs351 7 жыл бұрын
Well taught mate!
@jemand1685
@jemand1685 2 жыл бұрын
Helped a lot thanks
@usamabinmuzaffar692
@usamabinmuzaffar692 3 жыл бұрын
I am really confused about the proof for Euler Circuits here... I couldn't understand the inductive hypothesis... So we assume that we have a graph with 'k' edges or less then 'k' edges has an Euler Circuit, cool... But when we do 'k+1', that breaks the conditions of an Euler Circuit as the degrees for the two vertices that the edge is connected between is not even anymore... And that brings the case of 'k-1' as well... How does the degree of each vertex still even?
@ruinmasters
@ruinmasters 3 жыл бұрын
e=k+1, you are adding an edge. but that edge must also satisfy (1) and (2), must be connected and even degree, the vertex you add will have have a way in and a way out for sure, since it must also have even degree
@JoCS11152
@JoCS11152 8 ай бұрын
I don’t get to understand how someone can come up with that solution (the wheel problem). I understand the explanation but how to come up with it?
@robharwood3538
@robharwood3538 8 жыл бұрын
Probably could have started your base case for the Euler circuit proof with Case(k Case(k
@erlunlian8577
@erlunlian8577 8 жыл бұрын
Hi there, you look like someone who understands the proof. I didn't understand how the reconstruction part of the proof proves that e=K+1 is true. Could you explain this to me please?
@The6thProgrammer
@The6thProgrammer 7 жыл бұрын
We remove an Euler Circuit and prove that the graph consists of smaller Euler Circuit Components. When you retrace the circuit you removed, you know that each time you encounter a vertex connected to another Euler Circuit Component you can take that circuit to return to your current vertex without traversing an edge twice (since the Euler Circuit Components have an even number of edges) and continue on your path. Thus when moving through the graph again you have shown that it is true for e = k + 1 since there is an Euler Circuit that you've discovered through the entire graph (which has k+1 edges).
@kaushikdr
@kaushikdr 5 жыл бұрын
How do you know how many vertices to use for the base case?
@vivekkapoor7195
@vivekkapoor7195 8 жыл бұрын
8 bitstring requires |v|=4 ? I did'nt get that. can u plz explain how? what bit strings r u talking about?
@indyyindyy
@indyyindyy 8 жыл бұрын
Do you know about the bitstring? It is a word containing 0s and 1s. But I don't know why it requires 4 vertices either.
@The6thProgrammer
@The6thProgrammer 7 жыл бұрын
Each vertex accounts for two bits. This is an application of something called hypercube graphs. Read the section titled "construction" to see how binary numbers are allocated to each vertex here: en.wikipedia.org/wiki/Hypercube_graph
@farshedadib3440
@farshedadib3440 7 жыл бұрын
For the euler circuit of the rotating drum, why did you name the vertices 10, 11, 01, and 00?
@raphaelseitz805
@raphaelseitz805 7 жыл бұрын
Farshed Adib this comes from the hypercube, see the video 'vertex degree and regular graphs' at about 11 minutes.
@RoshniRMenonKrishna
@RoshniRMenonKrishna 7 жыл бұрын
Superb 👌👌👌👌👌
@lemontre7502
@lemontre7502 2 жыл бұрын
i cant take it anymore
@snehashrestha4884
@snehashrestha4884 2 жыл бұрын
i found theorems so boring
[Discrete Mathematics] Planar Graphs
21:03
TrevTutor
Рет қаралды 113 М.
Discrete Math II - 10.5.1 Euler Paths and Circuits
17:37
Kimberly Brehm
Рет қаралды 24 М.
Каха и лужа  #непосредственнокаха
00:15
PRANK😂 rate Mark’s kick 1-10 🤕
00:14
Diana Belitskay
Рет қаралды 11 МЛН
INTRODUCTION to GRAPH THEORY - DISCRETE MATHEMATICS
33:23
TrevTutor
Рет қаралды 747 М.
Graph Theory:  Euler Paths and Euler Circuits
9:52
Mathispower4u
Рет қаралды 389 М.
[Discrete Mathematics] Vertex Degree and Regular Graphs
19:44
TrevTutor
Рет қаралды 84 М.
Mathematical Proof Writing
19:23
The Math Sorcerer
Рет қаралды 54 М.
Eulerian Circuits and Eulerian Graphs | Graph Theory
7:43
Wrath of Math
Рет қаралды 40 М.
[Discrete Mathematics] Euler's Theorem
18:36
TrevTutor
Рет қаралды 76 М.