Additional Code by Eugenio Sainz Ortiz: github.com/GenioSainz/Dynamical-Systems
@dafield_family66689 ай бұрын
i love the transparent table and the colors. truly a wonderful format to lure people into maths. great job
@albertopenacabana2 жыл бұрын
And finally here!! Thanks for this series of videos, Steve. The way you explain math, going to the deep meaning, giving the intuition behind each concept, is definitely the way to make people love math.
@rajendramisir3530 Жыл бұрын
Brilliant explanation and reasoning through phase portraits without friction and with friction in a dynamical mechanical system.
@philblandford5560 Жыл бұрын
I'm glad you corrected the name of the function, my brain was short-circuiting for a while there
@woodworkingaspirations1720 Жыл бұрын
Excellent teaching. Saved me going through several pages of a chapter.
@mikhail_koshelev2 жыл бұрын
Beautiful! Thank you a lot for the videos! I check the channel every day for new episodes. Hope you won't stop making more content in the future!
@malikialgeriankabyleswag420010 ай бұрын
You are a great man and a great teacher may God bless you! And thanks for providing this for us.
@AniruddhKrishna Жыл бұрын
amazing video. I cant eeven stress on how much phase portraits have troubled me
@whootoo11172 жыл бұрын
Best math hours on this channel. Thanks man for the great work and love you are giving explanations!
2 жыл бұрын
This an work of art. Thank you!
@hoseinzahedifar15622 жыл бұрын
This lecture is very interesting... Thank you very much.
@alirezaesmailnezhad7200 Жыл бұрын
This was very instructive and helpful.
@ivargun5 ай бұрын
Your handwriting is really nice!
@ireoluwaTH2 жыл бұрын
Fascinating! Thank you...
@eugeniagomes27277 ай бұрын
Thaks for the explanaition, It was super clear!
@otibb Жыл бұрын
Beautiful! This is art!
@Eigensteve Жыл бұрын
Thanks!
@williancintra4850Күн бұрын
Great class! My only question is: how can he write backwards like that?
Жыл бұрын
What an understandable lecture! Thank you so much!
@GeoffryGifari2 жыл бұрын
wait... the phase portrait kinda looks as if its a contour plot when we look at the potential "hills and valleys" from "above"
@demr04 Жыл бұрын
"kinda" but not. The phase space follow the gradient of the hamiltonian, and the hamiltonian is the kinetic + potential.
@carrion.alfredo Жыл бұрын
Really, really🤯. Great explanaition
@Giovanni2862 Жыл бұрын
How is the representation of trajectories in 3D space with t axis said in English?
@surbhi40282 жыл бұрын
Please also explain how to solve and draw phase portrait numerically like in MATLAB
@BalaramPradhan-i4f Жыл бұрын
Thank you so much sir for such a nice explanations. Sir please make a video how to draw this graph in Mathematica or in Matlab
@tarielsimonyan99072 жыл бұрын
thanks a lot Steve!
@MM-ei7xv8 ай бұрын
amazing explanation! thank you
@Eigensteve8 ай бұрын
Glad you enjoyed it!
@BalaramPradhan-i4f Жыл бұрын
Sir can we draw this graph in Mathematica or in Matlab ?? If possible then make videos to draw this in Mathematica plz sir
@anandkumarpatidar1140 Жыл бұрын
Thank You professor.
@komalfiza1314 Жыл бұрын
Sir when we linearize nonlinear system what about error?
@GeoffryGifari2 жыл бұрын
is the usefulness of linearizing around fixed points providing us with hints on how to draw the entire phase portraits just from the behavior around those neighborhoods?
@khayahbrookes2 жыл бұрын
Thank you.
@chohan22532 жыл бұрын
I am a beginner at these things where can I learn all the maths needed to understand this stuff. Someone, please help