No video

Squares Ending in Repeating Digits

  Рет қаралды 13,801

Dr Barker

Dr Barker

Күн бұрын

Пікірлер: 38
@blackpenredpen
@blackpenredpen 2 жыл бұрын
Super interesting! Your content is always interesting and unique! 👏
@Gojo_12371
@Gojo_12371 2 жыл бұрын
I have found you to comment on his several videos ✨
@arjuntilak5023
@arjuntilak5023 2 жыл бұрын
Wow, u also watch this....
@DrBarker
@DrBarker 2 жыл бұрын
The ultimate seal of approval - thank you!
@joaozin003
@joaozin003 2 жыл бұрын
Your content is also super unique!
@elephantdinosaur2284
@elephantdinosaur2284 2 жыл бұрын
Nice problem and solution. If you look at the same problem but for cubes there's infinitely many solutions. As an example the cube of 79,858,716,637,368,288,471 ends with 20 ones. We'll prove something a little stronger which will make the proof by induction easier. We'll prove the claim that for every k we can find an integer x such that x^3 = 111...111 mod 10^k and x^2 = 1 mod 10. The base case k = 1 follows by considering x = 1. For the inductive step we'll suppose we can find an x such that the assumptions are satisfied for some k. We'll show we can find an X that satisfies the same equation but with k+1. We want to show X^3 = 111...111 = (10 ^ (k+1) - 1) / 9 = - 1 / 9 mod 10 ^ (k+1), or 3 + 27 X^3 = 0 mod 10^(k+1). As well as X^2 = 1 mod 10. Substituting X = x + 10^k * u, we want to solve the below equation in u: 0 = 3 + 27 * X^3 = 3 + 27 * [x^3 + 3 * x^2 * 10^k * u + 3 * x * 10^(2k) * u^2 + 10^(3k) * u^3] = [3 + 27 * x^3] + [81 * x^2] * 10 ^ k * u mod 10 ^ (k + 1) By the inductive hypothesis we have: x^2 = 1 mod 10 so in particular 81 * x^2 = 10B + 1 for some B and X^2 = (x + 10^k * u)^2 = x^2 = 1 mod 10. Additionally we have 3 + 27 * x^3 = 0 mod 10^k, i.e. 3 + 27 * x^3 = A * 10^k Substituting the equations for A & B in gives: A * 10^k + (10B + 1) * 10 ^ k * u = 0 mod 10 ^ (k + 1) A * 10^k + 10 ^ k * u = 0 mod 10 ^ (k + 1) A + u = 0 mod 10 u = (- A) mod 10 Thus we've found our u and we're done.
@DrBarker
@DrBarker 2 жыл бұрын
This is very cool - thank you for sharing!
@perappelgren948
@perappelgren948 Жыл бұрын
Seeing this over and over again. So simplistic, yet elegant and mindblowing.
@sweetcornwhiskey
@sweetcornwhiskey 2 жыл бұрын
Does this mean therefore that 38 is the number whose square has the largest number of nonzero repeating digits at the end?
@englematics
@englematics 2 жыл бұрын
I think you're right. Good observation.
@coragon42
@coragon42 2 жыл бұрын
Actually, there is a repeating pattern. 38+500n and 462+500n (where n is an integer) will always have perfect squares ending with 444. I used the fact that 12+50n and 38+50n always have perfect squares ending in 44 to test this, but these sorts of patterns can be proved using binomials.
@radadadadee
@radadadadee 2 жыл бұрын
excluding zero. (100)^2 is 10000
@heygooooooooo
@heygooooooooo 2 жыл бұрын
Loved the fade to "erase" the board.
@hvok99
@hvok99 2 жыл бұрын
This was really fun! Thanks for taking us on so many guided tours of interesting math. Your channel is gold 🐳
@DrBarker
@DrBarker 2 жыл бұрын
Thank you!
@tamirerez2547
@tamirerez2547 2 жыл бұрын
Can't explain why, but this video is like a fascinating action movie with a ... SAD END.
@paradoxica424
@paradoxica424 2 жыл бұрын
corollary: there is no square root of …44444444 in the 10-adics
@abdullahh283
@abdullahh283 2 жыл бұрын
The videos are really great, thanks for the uploads doc!
@vijaysubramanian2037
@vijaysubramanian2037 2 жыл бұрын
This is cool!
@emanuellandeholm5657
@emanuellandeholm5657 2 жыл бұрын
This is cool! I was thinking about k^2 = y 10^m + x ( 10^m - 1 ) / 9, using a finite geometric series. Using difference of squares, this gives (3k)^2 - (3 sqrt(y) sqrt(10^m)^2 = x * 1....111 => (3k - 3 sqrt(y) 10^(m/2)) (3k + 3 sqrt(y) 10^(m/2)) = x.xxx, which gives a nice factorisation if y is a perfect square and m is an even number.
@shruggzdastr8-facedclown
@shruggzdastr8-facedclown 2 жыл бұрын
The obvious question for me is: Given that we've proven that it's impossible to have the square of an integer contain four repeating end-digits, how about checking for repeating digits of five or more, and then see if there's a pattern with respect to which one's work and which ones don't or if there is no pattern and three repeating end-digits is the maximum.
@shruggzdastr8-facedclown
@shruggzdastr8-facedclown 2 жыл бұрын
(insert question mark here)
@shruggzdastr8-facedclown
@shruggzdastr8-facedclown 2 жыл бұрын
Another question that occurred to me is: What if you switch bases (like base-12, for example)?
@oledakaajel
@oledakaajel 2 жыл бұрын
An integer that ends with five repeating digits or more also ends with four repeating digits
@alvaroyonekura455
@alvaroyonekura455 2 жыл бұрын
Wooow it's a really nice problem !! Very intresting and beautiful solution :)
@sepdronseptadron
@sepdronseptadron 2 жыл бұрын
what about for a different base of numbers?
@DrBarker
@DrBarker 2 жыл бұрын
This is a really interesting question! In binary, you can show that all squares have to end in ...01 or ...00, so there are no nice squares ending in repeating non-zero digits. I'll have to think some more about all the other bases though.
@ScorpioneOrzion
@ScorpioneOrzion 2 жыл бұрын
@@DrBarker What about all bases up to X?
@kenhaley4
@kenhaley4 2 жыл бұрын
Nicely done! As are all your videos. I'm sure I'm not alone when I ask...can you give us a little personal background? Like, what is your full name, how old are you, and what is your educational background?
@tsawy6
@tsawy6 2 жыл бұрын
How many solutions are there with three repeating digits?
@DrBarker
@DrBarker 2 жыл бұрын
There are infinitely squares ending in 3 repeating digits. To see this, you could consider 1038^2, 10038^2, 100038^2, ... , where adding more zeroes doesn't affect the last 3 digits. But there are other squares ending in 3 repeating digits too (e.g. 462^2, 538^2, and more).
@matt_hewillow
@matt_hewillow 2 жыл бұрын
That is an absolutely amusing video!
@sdspivey
@sdspivey 2 жыл бұрын
What about 5 repeating fours, or 6, or 7...?
@LinkAranGalacticHero
@LinkAranGalacticHero 2 жыл бұрын
He proved at the end of the video that it's not possible
@DrBarker
@DrBarker 2 жыл бұрын
Yes, if there were 5 repeating fours at the end of a number, then the last 4 digits would also all be fours. But we've seen that that is not possible, so you can't have any more than 3 repeating fours at the end.
@tomcummings2436
@tomcummings2436 Жыл бұрын
This is an Irish math Olympiad 1989 problem
@dp121273
@dp121273 2 жыл бұрын
Cool video but too heavily compressed audio.
@menjolno
@menjolno 2 жыл бұрын
You forgot 10 sacred. Lol
How Many Squares does the Diagonal of an m x n Rectangle Cross?
10:08
Midpoints Between Squares of Consecutive Integers
9:46
Dr Barker
Рет қаралды 8 М.
Фейковый воришка 😂
00:51
КАРЕНА МАКАРЕНА
Рет қаралды 5 МЛН
Glow Stick Secret Pt.4 😱 #shorts
00:35
Mr DegrEE
Рет қаралды 18 МЛН
Solving a Combinatorics Problem with the First Moment Method
14:21
Squaring Primes - Numberphile
13:48
Numberphile
Рет қаралды 1,6 МЛН
The Longest Standing Mathematical Conjecture That Was Actually False
14:08
Sum of the First 1000 Integers Not To Contain the Digit 9
14:43
A Fun Number Theory Problem
7:57
Dr Barker
Рет қаралды 54 М.
The Math Needed for Computer Science
14:54
Zach Star
Рет қаралды 2,3 МЛН
Fast Inverse Square Root - A Quake III Algorithm
20:08
Nemean
Рет қаралды 5 МЛН
A Limit with an Elegant Solution
14:37
Dr Barker
Рет қаралды 10 М.
A Fun Twist on a Familiar Problem
9:01
Dr Barker
Рет қаралды 8 М.