Category Theory II 3.1: Examples of Limits and Colimits

  Рет қаралды 12,711

Bartosz Milewski

Bartosz Milewski

Күн бұрын

Пікірлер: 16
@-ion
@-ion 6 жыл бұрын
Is a cocone also known as a "ne"?
@connemignonne
@connemignonne 7 жыл бұрын
oh heck that bit at the end with the applications of continuity is the beauty that keeps me interested in mathematics
@marcusklaas4088
@marcusklaas4088 7 жыл бұрын
Definitely. Wonderful stuff.
@Rozenkrantzz
@Rozenkrantzz 8 жыл бұрын
Thank you for uploading these so frequently!
@j.c.m.2181
@j.c.m.2181 4 жыл бұрын
Re: pushout examples. If you think of a pullback as a 'specialized' version of a product (i.e. a product, except with an extra condition on top that says the components' morphisms applied to them produce a B), a pushout would be a 'specialized' sum/disjoint union where components are produced by a morphism from B. So, if a pullback is a filter that produces *pairs of outputs* , a pushout is a filter that produces *unions of factorizations* with respect to B. A simple example would be a category of positive integers with addition as morphisms - the pushout produces disjoint unions of 2-step paths to produce a number from any other starting point. For instance, the pushout of 2 from 0 is: "Either" [b=0, f=(+0), a=1, g=(+2)] [b=0, f=(+1), a=1, g=(+1)]. The 'true' pushout colimit in this case is, I think, just adding one factorized as "Either" [(+0) (+1)] [(+1) (+0)] (A & C omitted for brevity). If my understanding and/or that example is correct, I would suspect the pushouts to pop up in pathfinding algorithms somewhere...
@andreacesaro317
@andreacesaro317 7 жыл бұрын
I think that the constructions of a sphere (as pushout of DD and D*, where S is the circle, D is the Disk, * is the point and S->D is the map from the circle to the border of the disk) are intuitive examples of pushoput. For a programming example I think that the "deadly diamond of death" can be formalized as a pushout.
@isaacdefrain9595
@isaacdefrain9595 5 жыл бұрын
Bartosz must've been hungry during this lecture :) Incredible explanations and examples! Thank you.
@nathanielvirgo
@nathanielvirgo 4 жыл бұрын
Why are these the next interesting limits after products and terminal objects? What about the limit of the category 1, or the category with two objects and one morphism between them, or one object and one non-identity arrow? Do those turn out to be trivial in some way? Also, what about the initial object in the category of cones (rather than cocones)? Does that give us anything interesting?
@zbynekslajchrt8089
@zbynekslajchrt8089 5 жыл бұрын
Great lecture(s)! I am just wondering whether as an intuitive example of a pushout could be taken a type Z representing things that are both A and B, while A and B are mutually exclusive types specialized from type C, i.e. the root. Let's says that C is Thing, A could be Animate, B Inanimate and Z something like "Zombie"? In other words, Z is a superposition of A and B.
@SJohnTrombley
@SJohnTrombley 7 жыл бұрын
Are morphisms in the category of sets functions, or binary relations?
@andreacesaro317
@andreacesaro317 7 жыл бұрын
The category Set is usually defined with ordinary functions as morphisms.
@ShimshonDI
@ShimshonDI 6 жыл бұрын
I like the examples. So in Set, is a pullback always a subset of a Cartesian product? Also, can you give any examples of coequalizers, or offer intuition about them?
@lwave9544
@lwave9544 6 жыл бұрын
I thought, a Terminal/initial object is unique in a category. But as you said, every singleton set in category set is a Terminal object. So which one is „the“ best to pick as the limit candidate of the „cheeting“ functor from the empty category to set? Are they only unique up to isomorphism?
@DrBartosz
@DrBartosz 6 жыл бұрын
AFAIK, all universal constructions are unique up to unique isomorphism
@eliastandel
@eliastandel 5 жыл бұрын
The punchline is mind-blowing
@ethannguyen2754
@ethannguyen2754 Жыл бұрын
I propose that we start calling cocones “nes”
Category Theory II 3.2: Free Monoids
36:54
Bartosz Milewski
Рет қаралды 11 М.
Category Theory II 4.1: Representable Functors
50:19
Bartosz Milewski
Рет қаралды 17 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН
Tuna 🍣 ​⁠@patrickzeinali ​⁠@ChefRush
00:48
albert_cancook
Рет қаралды 148 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Category Theory II 2.1: Limits, Higher order functors
42:36
Bartosz Milewski
Рет қаралды 16 М.
Category Theory For Beginners: Understanding Pullbacks
1:56:15
Richard Southwell
Рет қаралды 3,7 М.
Category Theory II 9.1: Lenses
41:59
Bartosz Milewski
Рет қаралды 8 М.
What are...limits?
10:59
VisualMath
Рет қаралды 1,6 М.
Category Theory For Beginners: Limits
1:23:34
Richard Southwell
Рет қаралды 10 М.
Limits & Colimits (via Diagrams, Cones, and Cocones)
31:12
CategoryTheoryProofs
Рет қаралды 571
General limits and colimits 1
8:09
TheCatsters
Рет қаралды 14 М.
Category Theory II 5.1: Yoneda Embedding
50:54
Bartosz Milewski
Рет қаралды 11 М.
Direct and Inverse Limits
14:16
By Grad For Grad
Рет қаралды 1 М.
Categories 5 Limits and colimits
31:10
Richard E Borcherds
Рет қаралды 16 М.
How to treat Acne💉
00:31
ISSEI / いっせい
Рет қаралды 108 МЛН