Beyond the Binomial Theorem: The Binomial Series

  Рет қаралды 25,552

Dr. Trefor Bazett

Dr. Trefor Bazett

Күн бұрын

Пікірлер: 60
@posi0504
@posi0504 Жыл бұрын
best binomial theorem explain video ever, explain why use c(n,k),relationship with Pascal's triangle. love it
@grinishkin
@grinishkin 5 ай бұрын
4:00 So far, the most valuable note on the topic on KZbin
@leapdaniel8058
@leapdaniel8058 2 жыл бұрын
Very cool! Would love to see a video expanding to the concept of multinomials as well.
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
Here is an addendum: the polynomial α·(α - 1)·(α - 2)·•••·(α - k + 1) actually has a special name: it is called the kth falling factorial of α. This is a kth degree polynomial on α, and the coefficients are known as the Stirling coefficients of the first kind. The binomial coefficient choose(α, k) is this equal to falling(α, k)/k!. This generalization of the binomial coefficient also appears not only as part of the binomial series, but it appears naturally in other contexts. For example, one idea may be to generalize higher-order derivatives to fractional order, and a Newton series, with this generalized binomial coefficient, can be used to explore this idea.
@PritishMishra
@PritishMishra 2 жыл бұрын
Your visualisations are getting more and more intuitive to understand!
@DrTrefor
@DrTrefor 2 жыл бұрын
Thank you!
@geraldsnodd
@geraldsnodd 2 жыл бұрын
0:37 The Sierpenski triangle 🔺️ is hidden inside Pascal's triangle . When I found out about it I was amazed.
@DrTrefor
@DrTrefor 2 жыл бұрын
That's so cool, eh?!
@geraldsnodd
@geraldsnodd 2 жыл бұрын
@@DrTrefor Yes sir it is 🤓
@starlord225
@starlord225 2 жыл бұрын
@@geraldsnodd You can also "collapse" iterations of Sierpinski's Triangle to get Pascal's Tetrahedron.
@geraldsnodd
@geraldsnodd 2 жыл бұрын
@@starlord225 how exactly?
@starlord225
@starlord225 2 жыл бұрын
@@geraldsnodd The layers of Pascal's Tetrahedron are the coefficients of (x+y+z)^n. If you consider, for example (x+y+z)^2, you have x(x+y+z)+y(x+y+z)+z(x+y+z) =x^2+xy+xz+xy+y^2+yz+zx+zy+z^2 =x^2+2xy+2xz+y^2+2yz+z^2. The last line can be arranged geometrically in to a triangle of Pascal's tetrahedron, but the line before that essentially consist of three triangles one where x is first, one where y is first and one where z is first. If you consider the values (x,y,z) arranged in a triangle, you can visually multiply two of these triangles to get the terms above (e.g. x*(x,y,z) would be x^2+xy+xz). The nine terms of the product before you "combine like terms" can naturally be arranged into an iterate of Sierpinski's triangle. For example xx xy xz yx zx yy yz zy zz You get part of Pascal's tetrahedron by the commutative property: xy=yz, xz=zx, yz=zy x^2 2xy 2xz y^2 2yz z^2 Sorry if these diagrams don't look very clear by the way, they are difficult to type out in the comments section of a youtube video. So, each layer of Pascal's Tetrahedron could be considered as a commutative version of Sierpinski's Triangle. The idea is that multiplication of these diagrams behaves similarly to how Sierpinski's triangle iterates, you replace each thing in one diagram by a scaled copy of things in the other one.
@RealLoveDragon
@RealLoveDragon Жыл бұрын
Only man who can explain difficult concepts in minutes!!
@MelodiCat753
@MelodiCat753 2 жыл бұрын
Extreemly extremly cool generalization. I loved also the way you paired up the binomial expansion to make itobvious why it is n choose k. Wonderful work!
@aashsyed1277
@aashsyed1277 2 жыл бұрын
Before seeing the whole title I was like this is gonna be multiminomial expansion , and it was not . But do that topic in another video please! The shirt is so cool !!
@DrTrefor
@DrTrefor 2 жыл бұрын
I do want to go that direction too!
@jkgan4952
@jkgan4952 Жыл бұрын
I learnt so much in this video it's kinda crazy
@zaydmohammed6805
@zaydmohammed6805 2 жыл бұрын
The timing of this video being released was awesome coz just today I was thinking about how newton calculated pi with the binomial expansion of (1+x) ^1/2 nd then realised that the formula for binomial theorem can't take 1/2 as an input so this cleared alot for me.
@DrTrefor
@DrTrefor 2 жыл бұрын
Indeed, that's awesome!
@fyrerayne8882
@fyrerayne8882 2 жыл бұрын
Very helpful, thanks
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
And ... 200k .... You almost done. Congratulations 👏🎉
@DrTrefor
@DrTrefor 2 жыл бұрын
So close!
@dqrksun
@dqrksun 2 жыл бұрын
Amazing explaination 😍
@TrinityTwo
@TrinityTwo 2 жыл бұрын
The Binomial Theorem, along with the Fundamental Theorem of Algebra, has to be among the most important concepts in intermediate algebra.
@Xanade
@Xanade 2 жыл бұрын
Did... did you just read my mind or something? These are the topics I've been working in four of my classes these weeks. They're advanced pre-SAT(well.. not in US, so sort of) classes, so I'm on binomial expansion and I always add the generalization with this exact notation of alpha choose k. haha
@DrTrefor
@DrTrefor 2 жыл бұрын
nice!
@ivanyamasaki661
@ivanyamasaki661 2 жыл бұрын
nice!
@blobberberry
@blobberberry 2 жыл бұрын
nice!
@samsunnahar9175
@samsunnahar9175 2 жыл бұрын
Thanks a lot for excellent explanation!
@DrTrefor
@DrTrefor 2 жыл бұрын
You are welcome!
@eriktempelman2097
@eriktempelman2097 2 жыл бұрын
Cool fact: in the triangle's prime numbered rows, all terms excerpt the 1's are multiplies of that row's prime numbers. E.g. row 5 is 1-5-10-10-5-1, and indeed, 5 and 10 are multiples of 5. Sweet.
@DrTrefor
@DrTrefor 2 жыл бұрын
So cool!
@AlessandroZir
@AlessandroZir 10 ай бұрын
and what happens when I have values for which the Taylor series won't work? when x is not between 1 and -1?!
@minimath5882
@minimath5882 2 жыл бұрын
that was awesome!
@Michael_Fischer
@Michael_Fischer 2 жыл бұрын
0 choose x = sinc(x) - Replace ! with the Gammafunction and compare with Euler's reflection formula. 1 choose 1/2 = 4/pi
@SuperDeadparrot
@SuperDeadparrot Жыл бұрын
How do you compute Pascal’s Triangle when N is large?
@albinbiju1700
@albinbiju1700 2 ай бұрын
I didn't actually get why the series wouldn't work outside the interval -1
@forthrightgambitia1032
@forthrightgambitia1032 2 жыл бұрын
Hey, why are the bounds -1 < α < 1? Also if you extend this to x + c where c is some kind of constant, the result will just be the same just multiplied by c^(α-k) at each summand right?
@DrTrefor
@DrTrefor 2 жыл бұрын
The easiest way to see this (bounds are for x not alpha), is to do a ratio test on the binomial series. And yes, shifts are totally fine:)
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
Great video, and great sweater lol. A natural followup question would be can we generalize k to be any real number?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
There is some sort of generalization you can come up with, using the Gamma function, but it just is not anywhere near as elegant, nor is it useful, since you never encounter series where the series index runs over the real numbers.
@khamidullokh6056
@khamidullokh6056 2 жыл бұрын
Can you also make videos on series of functions, thanks in advance
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
Great, as always. Thank you so much Professor. But ... *Eat. .. Sleep ... Physics and Math ... Now Repeat*
@DrTrefor
@DrTrefor 2 жыл бұрын
haha i still love physics majors:D
@user-wu8yq1rb9t
@user-wu8yq1rb9t 2 жыл бұрын
@@DrTrefor Please make videos about Physics too. Thank you 💗
@godfreypigott
@godfreypigott 2 жыл бұрын
Doesn't the expansion for (1+x)^(-1) only converge for x in the interval (-1,1)?
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
Correct, but this is not specific to exponent -1.
@godfreypigott
@godfreypigott 2 жыл бұрын
@@angelmendez-rivera351 He presented that specific example.
@GeoffryGifari
@GeoffryGifari 2 жыл бұрын
when you said (x+y)^π my first thought was to expand π in a series then do an infinite product lol
@bobtivnan
@bobtivnan 2 жыл бұрын
I use the binomial theorem to prove the power rule for derivatives when the exponent is a nonnegative integer. But it seems like circular reasoning to then extend the power rule for real exponents to prove the binomial theorem for real exponents. I’m guessing there must be another way to prove the power rule over the reals.
@DrTrefor
@DrTrefor 2 жыл бұрын
Main way is via induction
@gaboqv
@gaboqv 2 жыл бұрын
I feel ashamed about thinking you miswrote "sequence" as series cus i didn't remember an infinite sum related to the bn coeficient even tough I took a full semester of combinatorics some years ago... I must say the density of the pascal triangle as shown by Derek in one of his videos could have been a good adition
@dirceureis1
@dirceureis1 2 жыл бұрын
Awesome!!!!
@koenth2359
@koenth2359 2 жыл бұрын
At times he speaks so fast, actuaIly checked my playing speed,
@sr.tarsaimsingh9294
@sr.tarsaimsingh9294 2 жыл бұрын
Is there anyone ; Who is seeking for MULTINOMIAL THEOREM as well 🤨🤨..?? 🧐
@DrTrefor
@DrTrefor 2 жыл бұрын
Haha that would have also been an awesome direction to go!
@yosafendrafendra7960
@yosafendrafendra7960 2 жыл бұрын
Partial differential equation please :(
@MrConverse
@MrConverse 2 жыл бұрын
Nice video but you spoke too fast. :-( 👎🏽
@Titurel
@Titurel 2 жыл бұрын
i set him a .75 LOL
This Infinitely Differentiable Function Breaks Taylor Series
11:54
Dr. Trefor Bazett
Рет қаралды 104 М.
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН
OCCUPIED #shortssprintbrasil
0:37
Natan por Aí
Рет қаралды 131 МЛН
Inventing the Binomial Theorem: An Intuitive Approach
5:00
Brain Tickle
Рет қаралды 2 М.
Overexplaining the binomial distribution
15:18
Primer
Рет қаралды 1,2 МЛН
This equation blew my mind // Euler Product Formula
17:04
Dr. Trefor Bazett
Рет қаралды 51 М.
The reason you should shuffle 7 times
19:27
Dr. Trefor Bazett
Рет қаралды 84 М.
How to Use the Binomial Theorem (NancyPi)
19:59
NancyPi
Рет қаралды 617 М.
The sequence that grows remarkably large, then drops to zero!
17:28
Intro to Taylor Series: Approximations on Steroids
12:43
Dr. Trefor Bazett
Рет қаралды 155 М.
Your calculus prof lied to you (probably)
9:38
Dr. Trefor Bazett
Рет қаралды 219 М.
Binomial series (KristaKingMath)
17:48
Krista King
Рет қаралды 35 М.
БОЙКАЛАР| bayGUYS | 27 шығарылым
28:49
bayGUYS
Рет қаралды 1,1 МЛН