Untangling the beautiful math of KNOTS

  Рет қаралды 64,967

Dr. Trefor Bazett

Dr. Trefor Bazett

Күн бұрын

Пікірлер: 108
@kanishkachakraborty
@kanishkachakraborty 2 жыл бұрын
Love the topology t-shirt, and incredibly interesting video as always. Thank you!
@DrTrefor
@DrTrefor 2 жыл бұрын
Thank you!
@greghearn7428
@greghearn7428 2 жыл бұрын
I absolutely love knot math. Great to see such a nice breakdown of it.
@DrTrefor
@DrTrefor 2 жыл бұрын
Thank you! It really is so cool
@HelPfeffer
@HelPfeffer Ай бұрын
0:02 I genuingly thought you were going to say "Are they the same not, or knot?"
@kanishkachakraborty
@kanishkachakraborty 2 жыл бұрын
My understanding of how the 1st and 3rd Reidermeister moves preserve tricolourability: 1st: A section of the knot is crossing itself, so only 1 colour is used - tricolourability allows a crossing having only a single colour. 3rd: If the two initial crossings satisfied tricolourability, the move preserves it, because sliding a section of the knot can only shift the position of crossings without modifying the nature of the crossings.
@NonTwinBrothers
@NonTwinBrothers 2 жыл бұрын
Best video explaining the concept of know theory I've ever seen. Well not that I'd be able to understand it way back then but you know
@3moirai
@3moirai 2 жыл бұрын
Great introduction to knot theory!
@DrTrefor
@DrTrefor 2 жыл бұрын
Thank you!
@aashsyed1277
@aashsyed1277 2 жыл бұрын
The title is so good so how good can the video get ? 10⁹ times better.
@shortsismakingmybrainrot
@shortsismakingmybrainrot 2 жыл бұрын
Omg this is cool, I absolutely love your channel, thanks so much for helping me get through my uni math courses.
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
Great video
@DrTrefor
@DrTrefor 2 жыл бұрын
thank you!
@BleachWizz
@BleachWizz 2 жыл бұрын
Nice video, definetly going into my references for my article! Also I have something to add: 3:18 - but just Reidemeister moves in sequence is not enough to directly simplify any diagram. By that I mean it's not always identifiable that you can perform a Reidemeister move to remove a crossing. I'm not sure though if moves that INCREASE the number of crossings are necessary, I THINK that only movements that keeps the number of crossings the same would have a chance to allow some undoing, but I could be wrong and I'd love to know.
@jcreazy
@jcreazy 2 жыл бұрын
I came here because I wanted to know how knots work. Now I'm more confused. Fascinating video. Thanks for making it.
@mahmoudalbahar1641
@mahmoudalbahar1641 2 жыл бұрын
Many thanks for your great videos. And I suggest making video about non-integer base of numeration.
@DrTrefor
@DrTrefor 2 жыл бұрын
You are most welcome! That would be a fun topic for sure:)
@brazni
@brazni 2 жыл бұрын
I was tired of being practical all the time so I got into knot theory
@seslocrit9365
@seslocrit9365 2 жыл бұрын
Could you do a video of DNA and Knots? Also, (on an unrelated topic) could you do a video on non-linear dynamics?
@DrTrefor
@DrTrefor 2 жыл бұрын
oooh, i wonder what connections there are to DNA!
@pseudolullus
@pseudolullus 2 жыл бұрын
@@DrTrefor many! Topology, winding number and twisting are crucial in DNA biology. It's crucial for DNA replication, bacterial plasmids and even cancer treatments which target aptly named topoisomerase proteins
@lgl_137noname6
@lgl_137noname6 2 жыл бұрын
4:20 to 4:25 amazingly, Google subtitle AI managed to not make a spelling mistake in the script. 6:09 I spoke too soon . 7:50 Knot invariant is definitely throwing it a curve ball.
@DrTrefor
@DrTrefor 2 жыл бұрын
haha that's kinda crazy how good the AI is these days, especially given how "not" and "knot" sound similar and this is a very isoteric topic!
@oriole8789
@oriole8789 2 жыл бұрын
Thanks for your videos! I'd like to bring your attention to the lower volume of some of your videos. If you right click on this video and select "stats for nerds" you can see that the content loudness is -14.6dB, where it should really be closer to 0dB. Since this is a log scale, the gap is substantial. Some of your videos are definitely mixed at significantly quieter volumes than others. In practice it just means that people would have to turn up the volume quite a bit, but that might make their next video play loud in a jarring way. Depending on the software that you use for editing, it may be possible to include a "compressor" filter in the audio chain, which can be used to normalize the audio levels and reduce the audio's dynamic range which will make it easier to hear on devices like phones, laptops etc, in addition to getting the output to be closer to 0dB. There are lots of tutorials on how compressors work (it's standard fair for radio and TV broadcast). Thanks!! -Nick
@DrTrefor
@DrTrefor 2 жыл бұрын
Thanks for letting me know, I'll do some more research:)
@ethandavis7310
@ethandavis7310 2 жыл бұрын
In the case where you take the un-knot and perform R-move 1, you'll end up with one crossing and 3 regions. Based on the diagram you showed and the information you gave, it seems that there are two possible values you could enter into the crossing 1-region 3 element of the matrix. How does this work?
@DrTrefor
@DrTrefor 2 жыл бұрын
You can choose either, and then we have to prove (not done in the video) that the knot invariant really is invariant based on this choice you mention as well as the others I talked about, that is giving the same polynomial up to multiplication by t^s
@angusritchie1956
@angusritchie1956 2 жыл бұрын
how did you choose which line was yellow or purple for the Alexander Polynomial?
@Jack_Callcott_AU
@Jack_Callcott_AU 2 жыл бұрын
The Reidemeister moves have inverses 2) and 3) are their own inverses and we can create an inverse to 1) then we can say two knots K_1 and K_2 are related by a relation R such that K_1 R K_2 iff there is a sequence of Reidemeister moves from K_1 to K_2. R is reflexive , symmetric and transitive and is therefore an equivalence relation on the set of knots which partitions the set into different knot-types. Am I not correct? BTW, thanks for the video. I have never seen this before.
@DrTrefor
@DrTrefor 2 жыл бұрын
Indeed!
@Jack_Callcott_AU
@Jack_Callcott_AU 2 жыл бұрын
@@DrTrefor
@muzammilaziz9979
@muzammilaziz9979 2 жыл бұрын
It's Reidemeister, with no r in between.
@DrTrefor
@DrTrefor 2 жыл бұрын
Lol oops:D
@482man
@482man 2 жыл бұрын
I once tried to make preztels with different knots, but it was too hard so I ended up with a plate of tri-knots lol
@simonsays_999
@simonsays_999 10 ай бұрын
i love knots :3
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
13:26 could you define what a well-defined polynomial is?
@godfreypigott
@godfreypigott 2 жыл бұрын
So you're looking for a well-defined well-defined polynomial?
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
@@godfreypigott No I meant what does well-defined mean. Either I didn't understand the definition he gave(in which case could someone please restate it) or he was using a circular definition(which is what it seemed like to me).
@godfreypigott
@godfreypigott 2 жыл бұрын
@@abrahammekonnen Ughhh ... when someone takes a joke literally ....
@abrahammekonnen
@abrahammekonnen 2 жыл бұрын
@@godfreypigott oh lol sorry
@DrTrefor
@DrTrefor 2 жыл бұрын
A definition is "well-defined", loosely, if it results in the same thing regardless of choices of input. So in our case given a knot there are many choices of knot diagram, many choices for labeling it, ambient isotropy, many choices for which columns of the matrix to eliminate etc. So you have to prove that for all those choices, it gives the same polynomial.
@crytp0crux
@crytp0crux Жыл бұрын
Just discovered the secret to Picasso art. They sort of look like knots. Doesn't the second one in 1:16 look like a Picasso drawing of Mr. Potato Head? That gives us a "Mr. Reidermeister Potato Head" by Picasso.
@PeterPrevos
@PeterPrevos 2 жыл бұрын
It seems that the unknot only have one region and 0 crossings (or x crossings and x+1 regions). Love to see a video about drawing knot projections in tikz
@DrTrefor
@DrTrefor 2 жыл бұрын
Indeed! I don't actually use tikz for this, i use knotplot mentioned in the description
@PeterPrevos
@PeterPrevos 2 жыл бұрын
@@DrTrefor I toyed with knotplot, but find it hard to get to nice knot projections you see in the literature. I am writing about knot theory in magic tricks.
@hdheuejhzbsnnaj
@hdheuejhzbsnnaj 2 жыл бұрын
Fantastic, but what about a full course! 😉
@DrTrefor
@DrTrefor 2 жыл бұрын
That would be amazing! I've never done a full grad level course on KZbin before, but if I did knot topology would be a great topic for it
@hdheuejhzbsnnaj
@hdheuejhzbsnnaj 2 жыл бұрын
@@DrTrefor absolutely. Most of the grad level math on KZbin is pretty dry and uninspired in it's presentation.
@GeoffryGifari
@GeoffryGifari 2 жыл бұрын
is there a pattern on how many knots thete are for a given number of crossing?
@DrTrefor
@DrTrefor 2 жыл бұрын
Not that I am aware of, but this function f(n) for the number of unique knots with n crossing definitely grows extremely fast. As I mentioned f(23) is over a 100 billion.
@GeoffryGifari
@GeoffryGifari 2 жыл бұрын
@@DrTrefor i'm thinking there's gotta be *some* pattern, this being math haha
@shutriMedia
@shutriMedia Жыл бұрын
Does this "three colorability" has something to do with three fundamental color charges of Quantum Chromodynamics ?
@maxp3141
@maxp3141 2 жыл бұрын
Wow, this video is just knots… apologies, I couldn’t resist it. :)
@DrTrefor
@DrTrefor 2 жыл бұрын
:D
@KurdaHussein
@KurdaHussein 2 жыл бұрын
how did u know zerez 1 in region V?
@hala2um960
@hala2um960 2 жыл бұрын
what is about matric space???
@anhthiensaigon
@anhthiensaigon 2 жыл бұрын
I have an intuition that when we already have a 2D projection of a knot, and start walking from an arbitrary point on the string. Whenever we walk over a cross, we take note whether the section of the string that crosses our path lies over or under our path (can be saved as a chain of 1s and 0s). Then out of that binary chain, we can recreate exactly 1 knot which is identical to the original knot, and we can also perform some calculations over it. Did mathematicians already consider this possibility? If yes, and if you know any proofs that this method wouldn't work, can you show us? Thanks :)
@DrTrefor
@DrTrefor 2 жыл бұрын
How do you keep track of WHERE you cross, is it between two other crossing for instance?
@PeterPrevos
@PeterPrevos 2 жыл бұрын
This is a bit like the Dowker-Thistletwaithe notation
@SuperDeadparrot
@SuperDeadparrot Жыл бұрын
If you shake a knot to unravel it, it will always unravel in the same direction, even if you try to twist in the opposite direction it will reverse itself.
@suhana.a.a7949
@suhana.a.a7949 10 ай бұрын
Please provide the reference textbook sir
@parth123ify
@parth123ify 2 жыл бұрын
Have people used neural nets to distinguish between knots? What's the performance?
@DrTrefor
@DrTrefor 2 жыл бұрын
That is a really interesting idea, I haven't seen such research but my GUESS here is that it is going to run into computability problems because a lot of the core problems in knot theory come down to the challenge of having insanely large number of computations for even very small knots. maybe neural nets can sidestep some of that mess in exchange for a small error rate or something of this nature.
@waltermelo5538
@waltermelo5538 2 жыл бұрын
Greetings! This was a very interesting and inspirating video, please can you recomend us some bibiography to study knot topology? I did my master in algebraic topology and I know things like homotopy, homology and cohomology. Thank you so much for your content.
@DrTrefor
@DrTrefor 2 жыл бұрын
Here is the notes for one course on knot topology: www.math.toronto.edu/~drorbn/classes/20-1350-KnotTheory/
@waltermelo5538
@waltermelo5538 2 жыл бұрын
@@DrTrefor Thank you so much!
@jakubb4784
@jakubb4784 2 жыл бұрын
Is there a perfect knot invariant?
@DrTrefor
@DrTrefor 2 жыл бұрын
Sadly no computable “complete invariant”
@billycox475
@billycox475 2 жыл бұрын
I'm here because I was just trying to figure out how to get an extension cord untangled
@DrTrefor
@DrTrefor 2 жыл бұрын
lol did I help you?
@billycox475
@billycox475 2 жыл бұрын
@@DrTrefor it's in an elegant unknotted coil now. Plus, I learned something. So time well spent. Great channel!
@OeshenNix
@OeshenNix 2 жыл бұрын
I had my volume on low and thought this was Zach star
@DrTrefor
@DrTrefor 2 жыл бұрын
We are going to merge into the same person imo
@StaticBlaster
@StaticBlaster 2 жыл бұрын
I believe this is used a lot in superstring theory (M-theory).
@robheusd
@robheusd 2 жыл бұрын
Knots do not exist in dimensions higher then 3 (or lower)
@StaticBlaster
@StaticBlaster 2 жыл бұрын
@@robheusd sure. I'm just going by the website that was online 5 years ago. They took it down. I'm not sure why but it was showing what math topics you need to know in order to be a string theorist.
@Eduardo-cr8ri
@Eduardo-cr8ri 2 жыл бұрын
Is this video for one of your math classes too?
@DrTrefor
@DrTrefor 2 жыл бұрын
Nope, just a cool advanced topic I wanted to share with KZbin
@continnum_radhe-radhe
@continnum_radhe-radhe 2 жыл бұрын
🔥❤️🙏
@gonzogil123
@gonzogil123 2 жыл бұрын
Do you have a video on the specific algorithmic procecess that generate knots. Their If then, i.v, d.v. generative functions? Is that available, or, did Disney purchased the rights not to be able to teach it (people have told me that). I know that it would be the functions for the geometry of things you may imagine etc. Like whatever Platonic solid in your head with whatever features etc.
@Nebukanezzer
@Nebukanezzer Жыл бұрын
Small error. The height of the power tower is 10^(1000000*n), not 10^1000000^n.
@crpfx302
@crpfx302 2 жыл бұрын
💗💗💗💗🧡🧡
@crsmith6226
@crsmith6226 2 жыл бұрын
Me listening to this: of course they’re different knots, they’re in different places duh.
@continnum_radhe-radhe
@continnum_radhe-radhe 2 жыл бұрын
This totally new topic for me ...it is strange
@fernandocolima7561
@fernandocolima7561 5 ай бұрын
Our body is a toroid because of our digective tube
@motherisape
@motherisape 2 жыл бұрын
I don't understand how definition of topology relates to torus and cup
@DrTrefor
@DrTrefor 2 жыл бұрын
You might like more intro to topology video here: kzbin.info/www/bejne/f6HOq4GbiJ16aJI
@motherisape
@motherisape 2 жыл бұрын
@@DrTrefor thanks
@angelmendez-rivera351
@angelmendez-rivera351 2 жыл бұрын
The torus and the cup are examples of sets within a topological space, especifically the topological space we associate with 3-dimensional Euclidean space. As sets within this topological space, they are equivalent. They can be effectively treated as if they were the same set. This is because these sets are homeomorphic.
@henrik3141
@henrik3141 2 жыл бұрын
Related to this video: kzbin.info/www/bejne/l37blHSXh5Wifrc
@rostkgb
@rostkgb 2 жыл бұрын
I Knew there was math behind them😅
@andrewharrison8436
@andrewharrison8436 2 жыл бұрын
You hid what D&D players call a plot hook in there: "... can be calculated in polynomial time". So people have discovered invariants that can't be calculated in polynomial time?
@missoss
@missoss 2 жыл бұрын
Could you please consider backing up your channel on Rumble and/or Odysee?
@Philoreason
@Philoreason 2 жыл бұрын
The sound volume is way too low.. otherwise good stuff!
@Whereareugari
@Whereareugari 2 жыл бұрын
Turn up the volume
@GeoffryGifari
@GeoffryGifari 2 жыл бұрын
hmmm maybe if we have several knot invariants, we can uniquely identify every knot
@DrTrefor
@DrTrefor 2 жыл бұрын
The real goal is a “complete invariant” which means it goes both directions, two knots are the same if and only if the invariant is the same. Sadly we don’t have such a computable complete invariant for knot theory
@Neptoid
@Neptoid 2 жыл бұрын
The knots are too small! I can't distinguish the crossings
@amaanabbasi280
@amaanabbasi280 2 жыл бұрын
Voice is soo low sir
@godfreypigott
@godfreypigott 2 жыл бұрын
Knot maths is not maths. Knot!
@theleviathan3902
@theleviathan3902 2 жыл бұрын
This video is about "not topology"? dang it
@ChannelMath
@ChannelMath 2 жыл бұрын
you didnnt define what 'consecutive regions' are. you just labeled the regions I-V seemingly arbitrarily. Thanks love your channel!
@AdemonGamer09
@AdemonGamer09 4 ай бұрын
Who else came here after finishing chapter 7 of reverse 1999
@weetabixharry
@weetabixharry 2 жыл бұрын
Is this joke funny? No, it's knot.
@swordofstrife1174
@swordofstrife1174 2 жыл бұрын
Knot theory is honestly my absolute favorite field of mathematics, learning about it is what got me interested in math beyond school Here's an awesome book on the subject: www.math.cuhk.edu.hk/course_builder/1920/math4900e/Adams--The%20Knot%20Book.pdf
@DrTrefor
@DrTrefor 2 жыл бұрын
Thanks for sharing!
Weird notions of "distance" || Intro to Metric Spaces
12:31
Dr. Trefor Bazett
Рет қаралды 94 М.
Invariants: How Mathematicians Distinguish Between Objects
14:33
Dr. Trefor Bazett
Рет қаралды 10 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
小丑女COCO的审判。#天使 #小丑 #超人不会飞
00:53
超人不会飞
Рет қаралды 16 МЛН
Арыстанның айқасы, Тәуіржанның шайқасы!
25:51
QosLike / ҚосЛайк / Косылайық
Рет қаралды 700 М.
The Insane Math Of Knot Theory
35:21
Veritasium
Рет қаралды 8 МЛН
The longest mathematical proof ever
19:30
Dr. Trefor Bazett
Рет қаралды 90 М.
The Beautiful Story of Non-Euclidean Geometry
15:28
Dr. Trefor Bazett
Рет қаралды 98 М.
Math News: The Bunkbed conjecture was just debunked!!!!!!!
14:59
Dr. Trefor Bazett
Рет қаралды 291 М.
What is a Knot? - Numberphile
10:52
Numberphile
Рет қаралды 620 М.
Not Knot
16:18
Tamara Munzner
Рет қаралды 660 М.
How Knots Help Us Understand the World
11:05
SciShow
Рет қаралды 286 М.
This equation blew my mind // Euler Product Formula
17:04
Dr. Trefor Bazett
Рет қаралды 52 М.
Prime Knots - Numberphile
6:56
Numberphile
Рет қаралды 217 М.
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН