The Lp Norm for Vectors and Functions

  Рет қаралды 81,036

Dr. Will Wood

Dr. Will Wood

Күн бұрын

Пікірлер: 97
@colinpitrat8639
@colinpitrat8639 3 жыл бұрын
One point missing (or not stressed out enough) is that the higher p is, the more important is the contribution of large errors (e.g points far from the values to evaluate). On the contrary, the lower p is the higher the contribution of the small errors. So a large p will favour estimations that have small maximal errors whereas small p will favour estimations that stay close to the function overall allowing large spikes in places. This is particularly visible comparing L_1 and L_inf. L_inf will be high for a perfect match except for a single point being far from the function to estimate, when L_0 will be 0. On the opposite, L_inf will be small (=epsilon) for an estimate e(x) = f(x) + epsilon whereas L_1 would be epsilon*(b-a) where [a,b] is the integration domain (so large error).
@DrWillWood
@DrWillWood 3 жыл бұрын
Absolutely, spot on. thanks for taking the time to write this!
@hudasedaki5529
@hudasedaki5529 10 ай бұрын
Thank you. That what I was looking for exactly.
@joaofrancisco8864
@joaofrancisco8864 3 жыл бұрын
One of the clearest explanations I've seen for this topic. Thank you!
@shafihaidery848
@shafihaidery848 3 жыл бұрын
1 year of confuse in my head solved in 7 minutes. god bless you well done
@DrWillWood
@DrWillWood 3 жыл бұрын
That's great, glad it was useful :-) Thank you so much!
@madcapprof
@madcapprof 3 жыл бұрын
The Lp norm,as defined in the video is valid only if p>=1 (not merely p>0). The triangular inequality is not satisfied for 0
@enterrr
@enterrr 3 жыл бұрын
So for p
@angeldude101
@angeldude101 2 жыл бұрын
p < 1 can still yield interesting results such as when plotting the unit "circle," though it technically doesn't give a "norm." Of course once you've started abandoning axioms like that, there's nothing stopping you for using p < 0 either. (p = 0 actually does give a valid _distance,_ but not a valid _norm,_ and only if 0^0 = 0, in which case it's the Hamming Distance.)
@bdennyw1
@bdennyw1 3 жыл бұрын
This has been invaluable! I’m understanding the Norms in machine learning now.
@DrWillWood
@DrWillWood 3 жыл бұрын
That's awesome!
@ArshamMikaeili-xy1td
@ArshamMikaeili-xy1td 6 күн бұрын
OMG! This is the best video I've seen on this topic. Thank you so much for making math easy and enjoyable!
@steveneiselen7993
@steveneiselen7993 3 жыл бұрын
*Outstanding Video!* Informative with both mathematical and behavioral explanations alongside graphical examples; while being succinct and 'to-the-point' without overdoing nor underdoing the level of detail.
@carlosunsolayag2728
@carlosunsolayag2728 3 жыл бұрын
I was struggling to figure this concept out for a while. Thanks a lot!!
@DrWillWood
@DrWillWood 3 жыл бұрын
Thank you so much! Glad this helped :-)
@amriteshsinha437
@amriteshsinha437 3 жыл бұрын
Using Lp norms in machine learning now. I only ever understood it vaguely. This is the only time I understand this perfectly. Thanks for the video.
@itscristianodasilva
@itscristianodasilva 2 ай бұрын
THANK YOU!! my linear algebra teacher is so confusing and absolutely abuses notation without visuals, this makes so much more sense
@mmko7374
@mmko7374 3 жыл бұрын
heading towards my first exam block of mechanical engineering and this is really making things clearer. If I wasn't living off a scholarship I would ask if I could donate somewhere, I guess a subscription and likes will have to do for now
@DrWillWood
@DrWillWood 3 жыл бұрын
Thanks so much. It's great to know this has been helpful! All the best for your exams! :-D
@emanualmarques5757
@emanualmarques5757 3 жыл бұрын
Very nice and clear with visualizations. Thank you.
@roshanshanmughan7218
@roshanshanmughan7218 Жыл бұрын
Amazing! Clearly explained! Thank you for the wonderful content!
@carlosjesuscaro8274
@carlosjesuscaro8274 3 жыл бұрын
Excellent explanation, very clear. Thank you!
@DrWillWood
@DrWillWood 3 жыл бұрын
Thank you!
@mertyazan
@mertyazan Жыл бұрын
Very clear explanation, thank you! I only wish I have seen your video before, that could have saved me a lot of time!
@themandlaziman
@themandlaziman 3 жыл бұрын
thanks for the visualisation here. my lecturers just throw theory at me oof
@yashrocks31
@yashrocks31 3 жыл бұрын
Very well explained. Thank you so much. God bless you!
@NguyenTamDanK18HCM
@NguyenTamDanK18HCM Жыл бұрын
How are you so underrated? Your videos are clear with thorough explanation and nice visual!! Probably the maths on your channel are too niche for the general public haha
@yidaweng7647
@yidaweng7647 3 жыл бұрын
Thanks for your explanations, very helpful!
@DrWillWood
@DrWillWood 3 жыл бұрын
Thanks, glad it was helpful!
@fathimahida8878
@fathimahida8878 3 жыл бұрын
It was really easy to understand with visualisation ... Thankyou so much
@menkiguo7805
@menkiguo7805 2 жыл бұрын
You expanded so well for me
@vatandoust
@vatandoust 3 жыл бұрын
Thank you! Simple and effective.
@DrWillWood
@DrWillWood 3 жыл бұрын
Thank you for your kind words!
@liamhoward2208
@liamhoward2208 2 жыл бұрын
Very clear explanation. You have one more subscriber! I also really enjoyed learning what a squwerkal is too!
@glichjthebicycle384
@glichjthebicycle384 Жыл бұрын
Very very helpful. Feeling a bit more prepped now for my analysis 2 exam c:
@Via.Dolorosa
@Via.Dolorosa 2 жыл бұрын
great one, so super easy to understand, I would like to see a video about norms of a transfer function G(s)
@limitstates
@limitstates 10 ай бұрын
Wow, such a great explanation.
@HarshaJK
@HarshaJK 2 жыл бұрын
Thanks
@Sckratchify
@Sckratchify 3 жыл бұрын
great video, it really help me out to understood better the concepts. new subscriber :)
@DrWillWood
@DrWillWood 3 жыл бұрын
Amazing, thank you! glad it was helpful :-)
@r.f2173
@r.f2173 Жыл бұрын
thanks this is great
@basantmounir
@basantmounir 3 жыл бұрын
Fascinating! 🤩
@giostechnologygiovannyv.ri489
@giostechnologygiovannyv.ri489 5 ай бұрын
1:36 p = 0 is called pseudo-norm ;)) and measures the sparsity of the vector :D with that your video is complete :D
@goddylincoln8590
@goddylincoln8590 3 жыл бұрын
You're the best, thank you very much. Great work man. Just subscribed
@DrWillWood
@DrWillWood 3 жыл бұрын
Awesome, thanks so much! :-)
@theodoremercutio1600
@theodoremercutio1600 11 ай бұрын
A lovely video! I can't help but ask, where is your accent from?
@SiriusFuenmayor
@SiriusFuenmayor 3 жыл бұрын
very nice visual representation
@DrWillWood
@DrWillWood 3 жыл бұрын
thank you!
@leticiaaires9123
@leticiaaires9123 Жыл бұрын
amazing video. thank you so much.
@canyadigit6274
@canyadigit6274 3 жыл бұрын
8:28 why are we integrating? From my definition of the Lp metric we have a sum not an integral Nvm figured it out
@isxp
@isxp 3 жыл бұрын
My text refers to these concepts as Matrix Norms. In the text, they give a 5th qualification, ||AB||
@DrWillWood
@DrWillWood 3 жыл бұрын
I think that matrix norms are a special case of the more general vector norms. In my opinion that inequality would be something that is true for matrices but not a requirement (i.e. something could be a norm without that being true but just so happens that it is true for all the norms we care about :-) ). I of course could be wrong with this though. The reason this inequality is more specific to matrix norms and not normed linear spaces in general is because the ability to multiply two vectors together is not always given for a normed linear space (you can add them together and/or multiply by constants). I hope that makes sense!
@austinbristow5716
@austinbristow5716 2 жыл бұрын
How do you know what Lp norm you would want to use when comparing 2 functions? Would the desired Lp norm change for functions of 3 variables? How does the L3 norm differ in 3_D vs 2_D. Thank you!
@canyadigit6274
@canyadigit6274 3 жыл бұрын
Another question. Why are functions included in Lp space? A member of the Lp space is a set of numbers (x,y,z,…) that satisfies some axioms, however functions aren’t a single set of numbers. They are multiple sets of numbers since each point of a function has a set of numbers (x,y,z…) describing it.
@DrWillWood
@DrWillWood 3 жыл бұрын
Hi! great question! I like to think of the Lp norm for functions as a kind of "limiting case" of vectors tending to infinity. This also relates to your earlier question actually. so imagining you have a set of n data points of a function over an interval eg (1,1), (2,2), (3,3), and we increase the number of points (1,1), (1.1,1.1), (1.2,1.2)... (3,3), not increasing the interval width beyond 1-3 in the x coordinate but the number of points between 1 and 3. Essentially, the limit as we reach an infinite number of data points is what a function is (at least that's how I like to think of it). At which point the sum becomes an integral. well, kind of, it works and that's the most important thing I guess! Now, regarding functions and Lp spaces, I think the crucial thing is the function being bounded in an interval otherwise lots of functions would have a norm of infinity which isn't useful. It might be a useful exercise to consider a continuous function over an interval with a given Lp norm (integral version) and ask if it satisfies the criteria of a norm (the 4 criteria at 0:58). Also to give context, I would say Fourier series are the most widely used application of norms involving functions over a given interval. Theoretically Fourier series finds the trig series (q lets say) which minimises the L2 norm of the function you want to approximate (f lets say) minus q, which is the minimum of sqrt(integral from a to b |f(x)-q(x)|^2 ). Hope this was helpful!
@the_informative_edge
@the_informative_edge 3 жыл бұрын
Really a great video
@DrWillWood
@DrWillWood 3 жыл бұрын
Thank you!
@pianochannel100
@pianochannel100 3 жыл бұрын
1:04, why is this the case ? ||x-z|| leq ||x-y|| + ||y-z|| ? What does this mean?
@tomkerruish2982
@tomkerruish2982 3 жыл бұрын
Essentially, it means that there are no shortcuts; you can't get from one point to another in less distance by deviating to a third point rather than going directly. It's a holdover from defining a metric space.
@pianochannel100
@pianochannel100 3 жыл бұрын
@@tomkerruish2982 Ah! Thanks!
@pianochannel100
@pianochannel100 3 жыл бұрын
@@tomkerruish2982 So if im understanding correctly it means that a straight line is always the shortest distance between two points in the space?
@tomkerruish2982
@tomkerruish2982 3 жыл бұрын
@@pianochannel100 Yes. It's the triangle inequality.
@pianochannel100
@pianochannel100 3 жыл бұрын
@@tomkerruish2982 Right, well thanks Tom!
@dansheppard2965
@dansheppard2965 2 жыл бұрын
Why is the L2 norm so ubiquitous in applied mathematics, even when there's no direct spacial aspect to the setup, for example in statistics and coding theory? I understand it's nicer to apply than L1 (especially near zero, which is an important point) but is there a good reason other than ease of use?
@syedfaizan5841
@syedfaizan5841 3 жыл бұрын
Need more and more from u
@ishakakyuz8586
@ishakakyuz8586 9 ай бұрын
Thank you!
@pengfenglin6851
@pengfenglin6851 2 жыл бұрын
Super good
@zoheirtir
@zoheirtir Жыл бұрын
Hi Dr Will, at 8.33 L2 is defined as a circle not square
@sharonarandia3630
@sharonarandia3630 2 жыл бұрын
Thank you so much
@SIMITechIndia
@SIMITechIndia 6 ай бұрын
won't the l2 norm be a circle instead of a square at each point. i.e. similar to a making a 3D shape by rotating each point of g(x) about f(x) as center and then taking the volume of that shape. Of course we are then applying a square root after this.
@dsagman
@dsagman 2 жыл бұрын
excellent!
@manishmiracle4317
@manishmiracle4317 3 жыл бұрын
Love from 🇮🇳india
@osamansr5281
@osamansr5281 3 жыл бұрын
AMAZING THANK U
@DrWillWood
@DrWillWood 3 жыл бұрын
Thank you so much!
@tomkerruish2982
@tomkerruish2982 3 жыл бұрын
Does anyone ever use L_p norms for anything other than p=1, 2, or infinity? For example, the L_3 norm is well-defined, but does it ever arise naturally?
@colinpitrat8639
@colinpitrat8639 3 жыл бұрын
L_0 norm can be used sometimes in machine learning (in some particular places) to favour models that have many 0 components. It's simply the number of non zero components of your vector.
@enterrr
@enterrr 3 жыл бұрын
Norms for p
@syedfaizan5841
@syedfaizan5841 3 жыл бұрын
Thanks a lot
@guilhemescudero9114
@guilhemescudero9114 3 жыл бұрын
Thanks!
@brunomartel4639
@brunomartel4639 3 жыл бұрын
perfect
@bugrayalcn6921
@bugrayalcn6921 3 жыл бұрын
Good old fashioned subscribe button
@davidansi1683
@davidansi1683 3 жыл бұрын
Woow...thanks
@manishmiracle4317
@manishmiracle4317 3 жыл бұрын
What a beautiful mind u have!
@yodafluffy5035
@yodafluffy5035 3 жыл бұрын
Thx 🙏😇
@VaradMahashabde
@VaradMahashabde 3 жыл бұрын
When I found out all my favorite metrics are actually siblings
@arberithaqi
@arberithaqi 3 жыл бұрын
You sound like the guy from Head Space
@DrWillWood
@DrWillWood 3 жыл бұрын
Love it! I can definitely see that :-)
@T015-f1y
@T015-f1y 2 жыл бұрын
U saved my ass! Thx
@elnotacom
@elnotacom 3 жыл бұрын
Why Norm is called by "L"?
@DrWillWood
@DrWillWood 3 жыл бұрын
To be honest I've never even thought of this! I've no idea but I definitely feel like I need to find out now! thanks for the question.
@peng.montreal
@peng.montreal 3 жыл бұрын
how about l0 norm ?
@DrWillWood
@DrWillWood 3 жыл бұрын
I think Gilbert Strang discussed this in one of his lectures on matrix methods for data science. He argued that logically this should be the number of none zero components eg || (2,5,0) ||_0 = 2. unfortunately, it fails the triangle inequality so isn't technically a norm! the same is true for any Lp norm where 0
@user-gh6wd5cv1h
@user-gh6wd5cv1h Жыл бұрын
this is actually very confusing and misleading, why would |x| has to be 1??
@aidandavis1780
@aidandavis1780 6 ай бұрын
It doesn’t have to be- we are just exploring what shape it makes when |x|=1. This is a diamond under the L1 norm, a circle under the L2 norm, and a square under the L infinity norm. Try showing that if we have |x|=R for some R>0 we get the same shape, just scaled by R.
@eldoprano
@eldoprano 4 ай бұрын
Ah fk, squircles really exist!
@user-sb6os
@user-sb6os 2 жыл бұрын
will wood real
@derblaue
@derblaue 3 жыл бұрын
What about semi-p norms for p ∈ Q, 0 < p < 1? They also have a very interesting unit circle (for x ∈ R^n, (x)ᵢ ≥ 0)
Approximating Functions in a Metric Space
7:46
Dr. Will Wood
Рет қаралды 57 М.
Normed Linear Spaces | Introduction,  L1 and L2 Norms
13:56
Dr. Will Wood
Рет қаралды 27 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 3,7 МЛН
Lecture 8: Norms of Vectors and Matrices
49:21
MIT OpenCourseWare
Рет қаралды 162 М.
Riemann Integral vs. Lebesgue Integral
19:25
The Bright Side of Mathematics
Рет қаралды 374 М.
The Concept So Much of Modern Math is Built On | Compactness
20:47
Morphocular
Рет қаралды 443 М.
The Revolutionary Genius Of Joseph Fourier
16:17
Dr. Will Wood
Рет қаралды 151 М.
Visualizing norms as a unit circle
7:39
Jonathan Sprinkle
Рет қаралды 73 М.
Sparsity and the L1 Norm
10:59
Steve Brunton
Рет қаралды 50 М.