This channel does not sacrifice theoretical details for high-level explanations. Perfect!
@CptCatpain22 күн бұрын
Yeah 6 years after this got uploaded i had to watch it. I have a presentation tomorrow about the ford fulkerson method and want to introduce edmonds karp as well. And your explanation was so good! Thank you!
@amido684 жыл бұрын
7:25 there are two available edges to follow as in the slide not one. Thank you for this Explanation
@RubLox_Live3 жыл бұрын
He was talking about the 2nd node which only has one feasible edge
@barlikwornik3769 Жыл бұрын
Great video! I wish college lectures were thought like this.
@egedenizi976 жыл бұрын
You are a life saver. Thanks man!
@chanwoolee3036 жыл бұрын
I'm wondering how you can teach so well. I wish there was a supersubscribed button that your posts stand out first.
@bhaskarpandey85864 жыл бұрын
There is and it is known patreon.
@TimonSchneider-e7bАй бұрын
Thanks for making this!!!
@stan-xd2pr5 ай бұрын
great explanation sir, thank you
@yka96324 жыл бұрын
i speak french. Yet it was more understandable than what my teacher said
@nikitagupta81145 жыл бұрын
Thanks, the video is precise and easy to follow.
@18meiy133 жыл бұрын
So well explained! Thanks so much!
@abhishekgupta7719 Жыл бұрын
Thanks for teaching
@allenhung43905 жыл бұрын
Thanks, it's so clear and informative.
@nii-san54855 жыл бұрын
thanks, wish you explained how the residual edges are used though
@danielayala66527 ай бұрын
In summary: - Ford-Fulkerson: Tackles the Maximum Flow problem using DFS (O(Ef) Complexity) - Edmonds-Karp: Tackles the Maximum Flow problem using BFS (O(VE^2) Complexity)
@nevochen4 жыл бұрын
you are THE BEST!! thank you so much!
@OriginalEch3Official Жыл бұрын
At 8:27 the max flow cannot be found by summing the *capacity* values going into the sink. What you are circling around are not capacities but flows. The sum of the capacities going in to the sink would be 5+15+10, which does not say much. According to the min-cut-max-flow theorem there exists a cut of the graph that will give us the same capacity sum as the flow sum of a cut, but in this case that cut does not do it. Notice also that any cut will have a capacity sum greater or equal to the flow, which leads us to conclude that the cut that gives the minimum capacity sum is equal to the maximum flow. This can be seen on the cut ({s}, V\{s}) for instance.
@liaoweien5 жыл бұрын
Thank you for doing this great video. Can you please explain why Edmonds Karp is independent of the flow value? From What i see from the video, it can still get into the increment by 1 flow value in the shortest path. Thanks in advance.
@WilliamFiset-videos Жыл бұрын
The time complexity to run Ford Fulkerson is O(E * f) where, f is the max flow. The time complexity to run Edmonds-Karp is O(V*E^2) which only depends on the number of vertices and edges. Since the time complexity of Edmonds-Karp doesn't depend on f, the time to run the algorithm won't depend on the value of the max flow, that's all I meant.
@josiahsweney40235 жыл бұрын
Thank you so much for this very informative video :)
@milindprajapat71772 жыл бұрын
Why do we keep track of negative flows?
@tudorradu5848 Жыл бұрын
Great tutorial!!!!
@manno0d5 жыл бұрын
great work, Thank you
@SaisankarGochhayat5 жыл бұрын
Great explanation thanks :)
@tuhinmukherjee81413 жыл бұрын
Could you please explain the time complexity of this algorithm?
@xXFireCrasherXx2 жыл бұрын
Awesome video! One question though: Is the intuition behind taking the shortest path edgewise that the chance is lower to find a small bottleneck edge?
@wes_m_3 жыл бұрын
Bless you sir
@iskhwa6 жыл бұрын
Thanks. That was perfect.
@lucianoinso5 жыл бұрын
At 4:00 why would you pick the lower vertex when using DFS? I know you say it's supposed to be a random DFS, but the original DFS algorithm just keeps going forward. Also thank you so much, there are not many videos on these subjects, I'm now preparing the final exam and your videos are way clearer than those available when i was studying for the midterms last year.
@WilliamFiset-videos5 жыл бұрын
Just to prove a point that a DFS might pick a non-optimal path from s->t
@just__khang Жыл бұрын
this is very nice.
@yahyairfan11595 жыл бұрын
Thanks Please upload another example for this in which any of the edje connected to the source has large capacity than othor edges in its augumented path
@khushbookkumarii2 жыл бұрын
quality content .
@benmarcus25776 жыл бұрын
first of all thank you so much one thing i was a bit confused about was how do you know which is the shortest path when you finished a round of bfs (as in the bfs doesn't return a shortest path...)
@WilliamFiset-videos6 жыл бұрын
It doesn't matter, any shortest path will do
@benmarcus25776 жыл бұрын
oh, right good point, thank you
@vasyasmanager2you3 жыл бұрын
Hello. Can you please make a video explaining the principle and demonstrating the programming application of Blossom algorithm?
@thepinkcodon4 жыл бұрын
awesome! thanks a lot
@ShakrinJahanMozumder9 ай бұрын
Thanks!
@j_blue67843 жыл бұрын
5:25 appreciate the symmetry xD
@narendraparmar16315 жыл бұрын
thanks sir 😊
@chaitanyasharma62703 жыл бұрын
why no pseudo code
@alexanderyaroshenko44616 жыл бұрын
Thanks bro.
@aishwaryashrestha7983 жыл бұрын
what tools do u use to make network vedio ? please tell me
@rupinmehra992 жыл бұрын
legend
@劉宇哲-y2i4 жыл бұрын
Isn't this algo use breadth first search?
@elestirel31313 жыл бұрын
adam ya adam
@jenweatherwax71133 жыл бұрын
I am so confused 😵💫
@ssshukla265 жыл бұрын
A request can you please teach university professors how to teach? No, don't, you better get some bucks through no of views on KZbin. Professor are taking hefty salaries for nothing.
@shang_chi46513 жыл бұрын
Well said👍
@v_iancu3 жыл бұрын
I gave a dislike to this one because you didn't show how backward edges work, I'm sorry
@Sukhraj_Sekhon Жыл бұрын
Watch the previous video, he said explicitly that it was an extension of the Ford Fulkerson algorithm. In that video he does explain it
@kells9k2 жыл бұрын
Dude seriously thank you so much this video was SOOO much better than that crap shoot by Ben Owain or whatever that british dudes name is