Very helpful! Already trained llama-2 with custom classifications using the cookbook. Thanks!
@craigrichards54724 ай бұрын
Amazing, can’t wait to play and train my first model 🎉
@thedelicatecook26 ай бұрын
Well this was simply excellent, thank you 🙏🏻
@dinupavithran11 ай бұрын
Very informative. Direct and to the point content in a easily understandable presentation.
@ggm4857 Жыл бұрын
I like to kindly request @DeepLearningAI to prepare such hands-on workshop on fine-tunning Source Code Models.
@Deeplearningai Жыл бұрын
Don't miss our short course on the subject! www.deeplearning.ai/short-courses/finetuning-large-language-models/
@ggm4857 Жыл бұрын
@@Deeplearningai , Wow thanks.
@ab8891 Жыл бұрын
Excellent xtal clear surgery on GPU VRAM utilization...
@KarimMarbouh Жыл бұрын
🖖alignement by sectoring hyperparameters in behaviour, nice one
@andres.yodars Жыл бұрын
One of the most complete videos. Must watch
@manojselvakumar426211 ай бұрын
Great content, well presented!
@tomhavy Жыл бұрын
Thank you!
@zubairdotnet Жыл бұрын
Nvidia H100 GPU on Lambda labs is just $2/hr, I am using it for past few months unlike $12.29/hr on AWS as shown in the slide. I get it, it's still not cheap but just worth mentioning here
@pieromolino_pb Жыл бұрын
You are right, we reported the AWS price there as it's hte most popular option and it was not practical to show all the pricing of all the vendors. But yes you can get them for cheaper elsewhere like from Lambda, thanks for pointing it out
@rankun203 Жыл бұрын
Last time I tried it, H100s are out of stock on Lambda
@zubairdotnet Жыл бұрын
@@rankun203 They are available only in specific region mine is in Utah, I don't think they have expanded it plus there is no storage available in this region meaning if you shut down your instance, all data is lost
@Abraham_writes_random_code Жыл бұрын
together AI is $1.4/hr on your own fine tuned model :)
@PieroMolino Жыл бұрын
@@Abraham_writes_random_code Predibase is cheaper than that
@Ev3ntHorizon Жыл бұрын
Excellent coverage, thankyou.
@dudepowpow3 ай бұрын
28 zoom notifications! Travis working too hard
@karanjakhar Жыл бұрын
Really helpful. Thank you 👍
@Ay-fj6xf Жыл бұрын
Great video, thank you!
@TheGargalon Жыл бұрын
And I was under the delusion that I would be able to fine-tune the 70B param model on my 4090. Oh well...
@iukeay Жыл бұрын
I got a 40b model working on a 4090
@TheGargalon Жыл бұрын
@@iukeay Did you fine tune it, or just inference?
@ahsanulhaque48119 ай бұрын
70B param? hahaha.
@msfasha Жыл бұрын
Clear and informative, thanx.
@goelnikhils Жыл бұрын
Amazing Content of fine tuning LLM
@nguyenanhnguyen7658 Жыл бұрын
Very helpful. Thanks.
@rajgothi2633 Жыл бұрын
amazing video
@ayushyadav-bm2to9 ай бұрын
What's the music in the beginning, can't shake it off
@rgeromegnace Жыл бұрын
Eh, c'était super. Merci beaucoup!
@jirikosek3714 Жыл бұрын
Great job, thumbs up!
@ggm4857 Жыл бұрын
Hello everyone, I would be so happy if the recorded video have caption/subtitles.
@kaifeekhan_25 Жыл бұрын
Right
@dmf500 Жыл бұрын
it does, you just have to enable it! 😂
@kaifeekhan_25 Жыл бұрын
@@dmf500now it is enabled😂
@bachbouch Жыл бұрын
Amazing ❤
@nekro9t2 Жыл бұрын
Please can you provide a link to the slides?
@nminhptnk Жыл бұрын
I ran Colab T4 and still got into “RuntimeError: CUDA Out of memory”. Any thing else I can do please?
@stalinamirtharaj1353 Жыл бұрын
@pieromolino_pb -Is Ludwig allows to locally download and deploy the fine-tuned model?
@hemanth8195 Жыл бұрын
Thankyou
@pickaxe-support Жыл бұрын
Cool video. If I want to fine-tune it on a single specific tassk (keyword extraction), should I first train an instruction-tuned model, and then train that on my specific task? Or mix the datasets together?
@shubhramishra8698 Жыл бұрын
also working on keyword extraction! I was wondering if you'd had any success fine tuning?
@PickaxeAI Жыл бұрын
at 51:30 he says don't repeat the same prompt in the training data. What if I am fine-tuning the model on a single task but with thousands of different inputs for the same prompt?
@brandtbealx Жыл бұрын
It will cause overfitting. It would be similar to training an image classifier with a 1000 pictures of roses and only one lilly, then asking it to predict both classes with good accuracy. You want the data to have a normal distribution around your problem space.
@satyamgupta2182 Жыл бұрын
@PickaxeAI Did you come across a solution for this?
@manojselvakumar426211 ай бұрын
Can you give an example for the task? I'm trying to understand in what situation you'd need different completions for the same prompt
@rachadlakis13 ай бұрын
can we have the slides plz ?
@SDAravind Жыл бұрын
can you share the slide, please?
@leepro7 ай бұрын
Cool! ❤
@arjunaaround4013 Жыл бұрын
❤❤❤
@feysalmustak9604 Жыл бұрын
How long did the entire training process take?
@edwardduda42227 ай бұрын
Depends on your hardware, dataset, and hyper parameters you’re manipulating. The training process is the longest phase in developing a model.
@kevinehsani3358 Жыл бұрын
epochs=3, since we are fine tunning, would epochs=1 would suffice?
@pieromolino_pb Жыл бұрын
It really depends on the dataset. Ludwig has also an early stopping mechanism where you can specify the number of epochs (or steps) without improvement before stopping, so you could set epochs to a relatively large number and have the early stopping take care of not wasting compute time
@Neberheim Жыл бұрын
This seems to make a case for Apple Silicon for training. The M3 Max performs close to an RTX 3080, but with access to up to 192GB of memory.
@ahsanulhaque48119 ай бұрын
Did you try on Apple silicon M1 Max?
@mohammadrezagh4881 Жыл бұрын
when I run the code in Perform Inference, I frequently receive ValueError: If `eos_token_id` is defined, make sure that `pad_token_id` is defined. what should I do?