Laplace's Equation and Potential Flow

  Рет қаралды 51,480

Steve Brunton

Steve Brunton

Күн бұрын

Пікірлер: 47
@anonjo2630
@anonjo2630 2 жыл бұрын
The fact that this is freely available on youtube is really insanely incredible, I appreciate it so much.
@JohnSmith-qp4bt
@JohnSmith-qp4bt 2 жыл бұрын
No it’s not insane. It’s just math. You’re English is tacky. Unpolished.
@charlesperry7300
@charlesperry7300 Жыл бұрын
The Professor writes out the subject material on the modern blackboard effectively in sync with clear explanation, making the subject easy to learn. This is what excellent teaching it is.
@Sulybrainerz
@Sulybrainerz Ай бұрын
finding this channel is a treasure for engineering students . thanks professor
@WilliamDye-willdye
@WilliamDye-willdye 2 жыл бұрын
I look forward to the day when mathematicians mention "flow fields" in a live lecture, and some future variant of Dall-E automatically creates an animated flow field on the screen. Dynamic systems deserve dynamic representation.
@J2000Ray
@J2000Ray 2 жыл бұрын
that would be wyyyld
@Facetime_Curvature
@Facetime_Curvature Ай бұрын
Just a small issue when it misinterprets things and winds up with NSFW increasing fluid flow through a tightening vortex... you get a very interesting presentation.
@Mutual_Information
@Mutual_Information 2 жыл бұрын
This channel is so damn good b/c Steve knows so damn much
@TimothyOBrien6
@TimothyOBrien6 2 жыл бұрын
Clear and concise. Couldn't ask for more.
@MM-cz8zt
@MM-cz8zt 2 жыл бұрын
Great video! I am extremely impressed that you can write so neatly reversed and backwards. Huzzah! That is a skill in and of itself.
@rymsharman
@rymsharman Жыл бұрын
the video is flipped during editing lol
@돌구름-t8t
@돌구름-t8t Жыл бұрын
Thank you for this deep theoretic lecture. I agree to your opinion of universal phenomenona. God bless you!!!
@NicholasRehm
@NicholasRehm 2 жыл бұрын
Steve, what exactly is your background? I can take a guess from the aero/ML content you’ve been pushing out lately, but loving it all nonetheless
@NITESHKSAHU
@NITESHKSAHU Сағат бұрын
Velocity field can be represented as a gradient of a scalar for irrotational and incompressible flow, even when flow is unsteady and the laplacian of phi =0 is then true for unsteady case where the unsteady peaks in through the unsteady bcs.
@beebee_0136
@beebee_0136 2 жыл бұрын
Thank you, Doc.
@curtpiazza1688
@curtpiazza1688 10 ай бұрын
This is GREAT! I'm learning a lot! New horizons for me! 😊
@jamesmosher6912
@jamesmosher6912 2 жыл бұрын
Love it! Question though, doesn’t the potential field still hold for Div * f x Grad V, where “f” is a scalar function? For example, in the standard wave equation, often derived/thought of as a fixed string under tension, the tension is constant. But, for say, a hanging chain, the tension in the chain varies with height and the governing equation involves something like Div * T(x) x Grad U. Laplace’s equation and the Laplace operator are really just special cases of the former in a homogenous medium. Also, I would LOVE a video about solving Laplace’s equation and the Helmholtz equation (really, finding the Eigenfunctions) on irregular domains. Triangles, or the square with one quadrant removed, etc. Thanks for the video!
@himanshuraj1482
@himanshuraj1482 2 жыл бұрын
Sir, I want to pursue Ph. D. under you. Currently, I am in IIT Bombay, India. I am your big big fan!
@timothypulliam2177
@timothypulliam2177 8 ай бұрын
An important fact about harmonic functions (functions that satisfy Laplace equation), is that their sum also satisfies Laplace equation. Del^2(f + g) = Del^2(f) + Del^2(g) = 0 + 0 Since the Laplace operator is a linear operator.
@straightforward4775
@straightforward4775 2 жыл бұрын
Prof. Steve i am new to all of this, I am becoming your FAN. I am studying fluid mechanics here in france as an international student and you are my beacon of hope. Allah has sent you into my path for that I am greatful.
@adetunjiquadtature4725
@adetunjiquadtature4725 10 ай бұрын
Nice class.
@sohailtabarhossain6096
@sohailtabarhossain6096 2 жыл бұрын
Thank you sir. It was so helpful
@arvindp551
@arvindp551 2 жыл бұрын
Lgga di lgga di aag lgga di 👏
@MyGaurav12
@MyGaurav12 2 жыл бұрын
@Eigensteve Great Series, Dr. Brunton. But why the flow has to be steady? Can't the potential exist at all times?
@kevincardenas6629
@kevincardenas6629 2 жыл бұрын
Thanks a lot for these videos! How often are you publishing them?
@TomatoesPlease
@TomatoesPlease 2 жыл бұрын
Hi Steve, is it correct to assume that divergence free means, colloquially speaking, divergence AND convergence free? In other words, it appears that the term divergence accounts both for expanding and retracting systems?
@Eigensteve
@Eigensteve 2 жыл бұрын
Yes absolutely, that is a good way to think about it
@TomatoesPlease
@TomatoesPlease 2 жыл бұрын
Excellent. Many, many thanks for sharing this gift with your viewers!
@daltontinoco7084
@daltontinoco7084 2 жыл бұрын
So i have to ask. Steve, are you a wizard at writing backwards or do you just flip the video. I can't tell its bothering me lol. Thank you for all that you share!
@fabiotiburzi
@fabiotiburzi 2 жыл бұрын
I think that he is left-handed and he flip the video in post production
@anthonymaione8307
@anthonymaione8307 29 күн бұрын
Hey when you state steady flow being the change in velocity being zero, does that also mean the vectors are not changing direction based on the definition. So the vector field changes and each vector maybe be different than another but each individual vector is steady?
@lioneloddo
@lioneloddo 2 жыл бұрын
What is counterintuitive with mathematics, is that to be more efficient, variables that we can not intuitively know, have to be used. Here, we intuitively understand what is the velocity, but it's better to use another quantity, the potential, that is very abstract. The same for the complex space. We don't know what it is, but it's easier tu use it rather than the real space.
@andersongoncalves3387
@andersongoncalves3387 2 жыл бұрын
Thank you!
@mariovrpereira
@mariovrpereira 2 жыл бұрын
Thank you
@mrbenson63
@mrbenson63 2 жыл бұрын
Hello, i just watched the two last videos. I'd be great to deal with streamline function, i mean the scalar field which gradient is orthogonal to a given potential vector field. This is very useful to visualize streamlines.
@sitrakaforler8696
@sitrakaforler8696 2 жыл бұрын
Nice video!
@michaele4151
@michaele4151 5 ай бұрын
Low pass filter the audio please (Thank you for making this video)
@alexfwfwfw4830
@alexfwfwfw4830 2 жыл бұрын
How the hell do you write backward and still manage to be readable?
@pk2712
@pk2712 Жыл бұрын
For me its pretty much easier to do the curl in 3 dimensions for Cartesian coordinates .
@xa4233
@xa4233 20 күн бұрын
Can’t understand the complex part, I probably need to step back and check complex variables.
@chipfoo5115
@chipfoo5115 2 жыл бұрын
I'm lost at complex potential...
@fabiotiburzi
@fabiotiburzi 2 жыл бұрын
That's why it's called complex
@johnalley8397
@johnalley8397 2 жыл бұрын
It's weird (complex analysis) after 2 semesters, I still have a very tenuous grasp.
@Eigensteve
@Eigensteve 2 жыл бұрын
I’m planning a little mini series on complex, so hang tight!
@fabiotiburzi
@fabiotiburzi 2 жыл бұрын
@@Eigensteve can't wait to see it!!
@johnalley8397
@johnalley8397 2 жыл бұрын
@@Eigensteve Lotsa demos, pictures, movies, mathmatica? The symbols fail to provide intuition.
@s.mammar6117
@s.mammar6117 2 жыл бұрын
Superbe
Potential Flow Part 2: Details and Examples
26:15
Steve Brunton
Рет қаралды 27 М.
Laplace's Equation and Poisson's Equation
17:55
Steve Brunton
Рет қаралды 69 М.
Quilt Challenge, No Skills, Just Luck#Funnyfamily #Partygames #Funny
00:32
Family Games Media
Рет қаралды 55 МЛН
Сестра обхитрила!
00:17
Victoria Portfolio
Рет қаралды 958 М.
The Best Band 😅 #toshleh #viralshort
00:11
Toshleh
Рет қаралды 22 МЛН
Potential Flows, Fluid Mechanics
7:13
2BrokeScientists
Рет қаралды 34 М.
Laplace Equation
13:17
MIT OpenCourseWare
Рет қаралды 257 М.
Potential Flow Theory Introduction (Essentials of Fluid Mechanics)
5:49
The Complete Guide to Everything
Рет қаралды 120 М.