Eigenvalue and Eigenvector Computations Example

  Рет қаралды 527,982

Adam Panagos

Adam Panagos

Күн бұрын

Пікірлер: 254
@JasonChuPoHan
@JasonChuPoHan 7 жыл бұрын
my lecturer explained this badly and you made me understand within 20 minutes!!! this helped me a lot!! thanks!!
@maxchai6461
@maxchai6461 7 жыл бұрын
for everyone that is having exam tomorrow, good luck! :D
@ayushbhandari5017
@ayushbhandari5017 Жыл бұрын
Today :)
@draco_lich
@draco_lich Жыл бұрын
Thenx, mine was yesterday, but thenx anyway bud.
@Ankurkumar14680
@Ankurkumar14680 4 жыл бұрын
Dear Adam, you have provided the best explanation to solve eigen vector....thanks a ton! God Bless You!
@AdamPanagos
@AdamPanagos 4 жыл бұрын
Glad I could help, thanks for the kind words! Make sure to check out my website adampanagos.org for additional content you might find helpful.
@snackbob100
@snackbob100 4 жыл бұрын
fantastic video. No assumptions, ground up approach, that i greatly appreaciate. very clear. thank you
@AdamPanagos
@AdamPanagos 4 жыл бұрын
Thanks for the kind words, I’m glad you enjoyed the video! Make sure to check out my website adampanagos.org for additional content you might find helpful. Thanks much, Adam
@vee_2412
@vee_2412 5 жыл бұрын
literally the most useful channel on the internet! thank you soooooooooooo much!!!!!!!!!!!!!!!!!!!!!
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Glad I could help, thanks for watching. If you’re looking for additional examples/videos make sure to check out my website adampanagos.org where I have a lot of other videos and resources available that you might find helpful. Thanks, Adam.
@jonase2414
@jonase2414 10 жыл бұрын
This is the only one and best one explained how to PROPERLY solve a eigenvalue and eigenvector in the whole WEBB! Thank you for solving a 3 x 3 matrix like this!
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad you found it useful, thanks for the nice feedback!
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Great question about eigenvalues Mayank. You can read about MIMO communication here: en.wikipedia.org/wiki/MIMO You'll note that the capacity of the MIMO channel is a function of a determinant that contains the channel matrix H. In general, H is modeled as a random matrix, so its eigenvalues are also random. This is important since the determinant of a matrix is the product of its eigenvalues. So, in this way, the eigenvalues of a wireless communication channel matrix are important since they determine the capacity of the channel. Hope that helps point you in the right direction.
@AliShan-yh2mt
@AliShan-yh2mt 7 жыл бұрын
Watching at 1:30 AM.Test in the morning! You are a life saver !!
@AdamPanagos
@AdamPanagos 7 жыл бұрын
Glad I could help and hope your test went well!
@rsjosh7403
@rsjosh7403 8 жыл бұрын
Thank you so much, I finally understood how to get eigenvectors thanks to you!
@AdamPanagos
@AdamPanagos 8 жыл бұрын
Great, glad to hear that. Thanks for watching!
@HamzaAhmed-oq5od
@HamzaAhmed-oq5od 5 жыл бұрын
It's my exam tomorrow, thank you for saving me
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Glad I could help! I hope your exam went well!
@khidrrr
@khidrrr 7 жыл бұрын
the ONLY problem with video was WHY WAS IT SO HARD TO FIND?! big THANK you! :)
@desmond3092
@desmond3092 3 жыл бұрын
AaaaaDddxz
@kasturivlogs
@kasturivlogs 9 жыл бұрын
This is the Best Video I found about eigenvalues and eigenvectors,You are a Great lecturer Mr Adam,Thanks for helping me :)
@AdamPanagos
@AdamPanagos 9 жыл бұрын
Glad to help, thanks!
@vishweshwarayyahiremath2527
@vishweshwarayyahiremath2527 7 жыл бұрын
wow such an easy and brief methods he used to solve this problem. Loved his explanation and solving method. Thanks a lot sir
@AdamPanagos
@AdamPanagos 7 жыл бұрын
You're welcome, thanks for watching!
@hannukoistinen5329
@hannukoistinen5329 2 жыл бұрын
No you did't undersdand adytthin Vishmerayaahowdospeakvishnyshiva hireapartmentinhindi idiot!!!
@ellenmalmin8375
@ellenmalmin8375 7 жыл бұрын
I also liked your exampel / presentation. When finding the eigenvectors corresponding to a given eigen value. It's normal to put z = t, where you write "any". The eigen vector would then for Lambda = 2: t x ( 1 -2 1), and visually expressing that you can scale the eigenvector just by choosing any number to the parameter t. Keep up the good work.
@klokklok3533
@klokklok3533 5 жыл бұрын
Thank u big man. It's quite easy to just type eig(A) in matlab but would rather understand the concept behind it.
@eriangelino7800
@eriangelino7800 5 жыл бұрын
You are the best teacher. Thanks a lot.
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Thanks!
@AminaXXX3
@AminaXXX3 7 жыл бұрын
Saved my life with this video thank you!
@AdamPanagos
@AdamPanagos 7 жыл бұрын
Glad I could help, thanks for watching!
@rajp5307
@rajp5307 6 жыл бұрын
Sir, you made the things much simpler to understand..!😀Great job, sir👍👍
@mkusasakala3861
@mkusasakala3861 10 жыл бұрын
Wow that was FLAWLESS! thanks a lot
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad it helped, thanks for the nice feedback!
@xbzq
@xbzq 5 жыл бұрын
Actually, he messed up the last sentence.
@MathScienceHistory
@MathScienceHistory 9 жыл бұрын
You videos are always extremely helpful. Thank you!
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+Gabrielle Birkman You're welcome, thanks for the nice feedback!
@terigopula
@terigopula 6 жыл бұрын
You saved my exam.. Cheers :)
@AdamPanagos
@AdamPanagos 6 жыл бұрын
Glad to help, hope the exam went well!
@stevemalsnhu5096
@stevemalsnhu5096 9 жыл бұрын
Adam, this video is pretty solid, nice job. (This is Steve Malbasa.) Thank you kindly.
@icee562
@icee562 5 жыл бұрын
The scaling factor for the Eigen vector always confused me. Thanks for the clarifications!!!
@justfortrollpeople8531
@justfortrollpeople8531 7 жыл бұрын
thanks Adam you are the best teacher
@brandoncazares8452
@brandoncazares8452 2 жыл бұрын
Adam, this video's very helpful for me. Thanks.
@AdamPanagos
@AdamPanagos 2 жыл бұрын
I’m glad you enjoyed the video! Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam
@satyadutt8120
@satyadutt8120 10 жыл бұрын
Excellent that's called a perfect MATHEMATICIAN
@thezmmc
@thezmmc 9 жыл бұрын
thank you so much Adam, you really helped me in my maths 2 college subject
@AdamPanagos
@AdamPanagos 9 жыл бұрын
Awesome, glad I could help!
@Faiselmoha
@Faiselmoha 4 жыл бұрын
I hope you are doing your MSc or phD now :)
@willeett
@willeett 9 жыл бұрын
Thank you sooo much for the eigenvectors. I not seen the logic behind them at all. Thanks!
@AdamPanagos
@AdamPanagos 9 жыл бұрын
Glad you found it useful, thanks!
@willeett
@willeett 9 жыл бұрын
Gave me 4 points on the exam ;D (of tot 24)
@bh4sh4
@bh4sh4 3 жыл бұрын
This helped a ton thank you!
@AdamPanagos
@AdamPanagos 3 жыл бұрын
You're very welcome, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam.
@perdehurcu
@perdehurcu 3 ай бұрын
Selamlar. Çok güzel bir ders olmuş. Tama aradığım dersti. Ağzınıza sağlık. Teşekkürler.
@fatimahbawazeer8974
@fatimahbawazeer8974 8 жыл бұрын
Thank you very much , helped me so much this semester
@MM-mc9ne
@MM-mc9ne 8 жыл бұрын
Thanks man , you did such a great presentation , i am just wondering if can i use the same method to find the Eigenvector for 3x3 matrix with trigonometric basis .
@hannukoistinen5329
@hannukoistinen5329 2 жыл бұрын
Thanks mään, shut your mouth mään!! And don't smile!!! Thänks mään!!!
@Mike-tu4lc
@Mike-tu4lc 4 жыл бұрын
easy to understand, thanks sir
@AdamPanagos
@AdamPanagos 4 жыл бұрын
You're very welcome, thanks for watching.
@clintonkas3508
@clintonkas3508 2 жыл бұрын
I instantly got lots when your started the eigen vector
@lowhaoming4238
@lowhaoming4238 5 жыл бұрын
in 5:15 ,isnt that the formula of finding determinant is 1-2+3 ? Please reply thanks!
@AdamPanagos
@AdamPanagos 5 жыл бұрын
I already included the negative sign with the 2 term when I did that initial calculation. So, it's just the sum of all the parts. Hope that helps. Adam
@computology
@computology 2 жыл бұрын
All of your 3 Eigen values formed a system in which the last row was all zero so you got the chance to select one variable to be any. What if (after row operations) your system has all diagonal values non-zero; in that case what would be your steps?
@AdamPanagos
@AdamPanagos 2 жыл бұрын
You will always get a row with all zeros. That's the definition of an eigenvalue that det(A-LI) = 0, so you'll always have a free variable and a row of zeros. Hope that helps, Adam
@aminaattar833
@aminaattar833 4 жыл бұрын
thank you so much for your help
@AdamPanagos
@AdamPanagos 4 жыл бұрын
You're very welcome, thanks for watching. Make sure to check out my website adampanagos.org for additional content (435+ videos) you might find helpful. Thanks, Adam.
@SuperLuckyKill
@SuperLuckyKill 8 жыл бұрын
I really liked this presentation.
@err3088
@err3088 4 жыл бұрын
Thanks! And I really like your font!
@AdamPanagos
@AdamPanagos 4 жыл бұрын
Thanks for the kind words, I’m glad you enjoyed the video! Make sure to check out my website adampanagos.org for additional content (450+ videos) you might find helpful. Thanks much, Adam
@elleoliveira5316
@elleoliveira5316 5 жыл бұрын
Excellent. Do you give online private classes?
@AdamPanagos
@AdamPanagos 5 жыл бұрын
No, at the moment I don't. Never really though it about it honestly......
@charlesamofordjuoh9940
@charlesamofordjuoh9940 9 жыл бұрын
thanks man you helped me so much this semester
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+Charles Amofordjuoh Excellent, glad to hear that. Thanks!
@tlt2237
@tlt2237 8 жыл бұрын
Clear and efficient presentation! Thanks!
@AdamPanagos
@AdamPanagos 8 жыл бұрын
+tlt You're welcome, thanks for watching!
@MichaelRhodess
@MichaelRhodess 5 жыл бұрын
wtf youre actually so lit at explaining everything
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Thanks much, glad I could help!
@ADR-f9u
@ADR-f9u 7 жыл бұрын
thanks for the video!! it is really helpful. I just wanted to understand how at 6:25 you arrive at lambda1 = 0? Why is it so obvious? Because the RHS = 0, this lambda has to be 0 (o times anything = 0?)? If so, since the RHS is always 0, why then not all lambda1 = 0?
@executorarktanis2323
@executorarktanis2323 3 жыл бұрын
4 years damn
@mailmayankpandey84
@mailmayankpandey84 10 жыл бұрын
I very much liked this video. I have done extensive searching but I didn't clearly understand the clear usage of Eigenvalue and Eigenvector in practical life. I somewhere read "it determines how much information can be transmitted through a communication medium like your telephone line or through the air or analyzes deformities in the building structure". But I don't understand how they create Eigenvalue and Eigenvector in such practical purposes. If you please give me some real life example that will be very helpful for me. Thanks in advance.
@prithvirajpodder1502
@prithvirajpodder1502 8 жыл бұрын
Sir, but how do i calculate the eigen values if there is also a constant in the equation(with the lamda values as well)?
@AdamPanagos
@AdamPanagos 8 жыл бұрын
If you need to compute the eigenvalues of a matrix that contains variables (as opposed to the numerical values as in this example) you would still follow the same process: Compute the characteristic polynomial and find the roots of the polynomial. These roots are still the eigenvalues. The only difference will be that these roots are function of the variables in your starting matrix (as opposed to numerical values). Hope that helps.
@prithvirajpodder1502
@prithvirajpodder1502 8 жыл бұрын
Thank you :)
@doaard9174
@doaard9174 6 жыл бұрын
You made it easy like 1+1
@burkee3086
@burkee3086 9 жыл бұрын
Adam thanks for this video . It really helps me but i have a ques. After putting eigen vector matrice become -0.5 1 2 -3.5 How can i find eigen vectors
@AdamPanagos
@AdamPanagos 9 жыл бұрын
Did you watch the last half of the video? In the first part of the video I solve for the eigenvalues. In the last half of the video I solve for the corresponding eigenvectors. You can follow the same process to compute eigenvalues and eigenvectors for any matrix.
@yakkaliharshitha6006
@yakkaliharshitha6006 8 жыл бұрын
Great explanation sir
@hamzaaead9680
@hamzaaead9680 4 жыл бұрын
بارك الله فيك رائع ما شاء الله
@AdamPanagos
@AdamPanagos 4 жыл бұрын
Thanks for the kind words, thanks for watching. Best, Adam
@JashanTaggar
@JashanTaggar 6 жыл бұрын
What a beautiful video!
@AdamPanagos
@AdamPanagos 6 жыл бұрын
Thanks! Make sure to check out my website adampanagos.org for additional content you might find helpful. Thanks again, Adam.
@samitpaudel7886
@samitpaudel7886 8 жыл бұрын
Thank you very much sir.
@harrsheethas6827
@harrsheethas6827 7 жыл бұрын
that helped me a lot! thank u so very much!
@gavinmaboya1
@gavinmaboya1 10 жыл бұрын
this is an excellent video. do you not have anything on the Gram-Schmidt algorithm?
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad you liked the video. Sorry, I don't have anything right now on the GS algorithm. Hopefully I'll get around to something like that in the future. Thanks.
@haseebsedeqi5351
@haseebsedeqi5351 7 жыл бұрын
wonderful finally i got it thanks a lot!!
@ck3908
@ck3908 4 жыл бұрын
good example.
@dinovdesignco
@dinovdesignco 7 жыл бұрын
How do you get the final result at 4:26 from -8-8λ+4λ2+2λ+2λ2-λ3 ? Please Respond.Thanks Edit:And also at 5:37 and 6:31 from the SET point downwards
@AdamPanagos
@AdamPanagos 7 жыл бұрын
All I'm doing is distributing the product (-4-L)*[-2-2L+L^2]. Just multiply it out.
@activeman1816
@activeman1816 8 жыл бұрын
very easy to understand sir ,thank u so much.
@yens086
@yens086 10 жыл бұрын
thank you for this video please in 6:00 i dnt understand how you took the like terms please i need your reply as soon as possible i have exam in two daYS TIME
@AdamPanagos
@AdamPanagos 10 жыл бұрын
To find the eigenvalues we need to solve for the lambda such that det(A-LI) = 0. The first part of the video is working through what det(A-LI) is. This computation was broken down into three parts. After computing all three parts we have det(A-LI) = part1 + part2 + part3. Since we want to know when this is equal to zero, I set this quantity equal to zero, i.e. det(A-LI) = 0. This equation is a function of lambda. We find all values of lambda that satisfy the equation. These are the eigenvalues. Hope that helps.
@yens086
@yens086 10 жыл бұрын
Adam Panagos oh thank you sir i got it now God bless you sir
@senthilsiddhu2
@senthilsiddhu2 7 жыл бұрын
thankz for the clear picture.....
@k.m.1851
@k.m.1851 10 жыл бұрын
What happens if an entire column (not row, as you've shown here) ends up being 0. For instance if all y entries are 0, does that equate y to any value or something else?
@aliameli3757
@aliameli3757 4 жыл бұрын
Hi, thanks for your wonderful videos. I need examples for LU Decomposition of a matrix and Gaussian Elimination. Is there any? I cannot find them in your videos.
@AdamPanagos
@AdamPanagos 4 жыл бұрын
You're very welcome. Sorry, I don't think I have any on those. I have like ~70 linear algebra videos but none on those topics yet. Guess I need to add those to the list!
@natetung4219
@natetung4219 5 жыл бұрын
Why would you do row reduction to find your eigenvectors if you could just do a system of equations? Or do I have this thinking backwards since avoiding system of equations is the point of matrixes
@thr_btsfanx6832
@thr_btsfanx6832 9 жыл бұрын
When you manipulated the matrix, is it in echelon form or reduced echelon form? I'm kind of confused when it comes to these two forms.
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+Jackji WangHeo Technically, the form I manipulated these into was echelon form, not reduced echelon form. The two forms are VERY similar, but reduced echelon form has every leading coefficient of a row equal to 1, while the row echelon form can have other numbers. You can read more about the slight difference between these two forms here: en.wikipedia.org/wiki/Row_echelon_form For this problem, it doesn't really matter exactly what form we manipulate it into. The key thing was being able to perform operations to be able to solve the system of equations. Hope that helps.
@alameeryamen1045
@alameeryamen1045 5 жыл бұрын
Very good man 💜
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Thanks for the kind words. Make sure to check out my website adampanagos.org where I have a lot of other videos and resources available that you might find helpful. Thanks, Adam.
@akhil5g199
@akhil5g199 7 жыл бұрын
it's really good...!! I just got an easy way to solve the problem
@lynns4122
@lynns4122 5 жыл бұрын
Thank you!
@AdamPanagos
@AdamPanagos 5 жыл бұрын
You're welcome, thanks for watching!
@mercyjepchirchir266
@mercyjepchirchir266 6 жыл бұрын
thanks alot for the help in eiglen values and vectors be blessed
@jt0851
@jt0851 9 жыл бұрын
Thank you this helped me alot.
@alphalimit8
@alphalimit8 8 жыл бұрын
Hello Mr. Adam can you make a tutorial for jordan form representations in matrix 2x2 or 3x3? :) Thanks.
@tonymurphy6952
@tonymurphy6952 10 жыл бұрын
awesome stuff, have you got more tutorials??
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad you liked the video. If you're looking for more I have about 170 or so videos on my KZbin page (kzbin.info) that you can check out. I also have these videos organized on my personal webpage (www.adampanagos.org) in more of a "course-organized" manner.
@muhmazabd
@muhmazabd 10 жыл бұрын
Awesome, Please how did you create this video???.... Which software please
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad you liked. I use an app on my iPad called Doceri, you can get it at doceri.com/. Very nice for making videos such as this. Hope that helps.
@sydl2799
@sydl2799 10 жыл бұрын
hi thanks for this video. i got stuck in part b in finding null space of A. please explain where E3 = 2E3 + E1 comes from. thank you very much
@AdamPanagos
@AdamPanagos 10 жыл бұрын
The eigenvectors are found by solving the null space equation. After we let L1 = 0, we end up with a linear system of equations. We need to solve this linear system of equations. To solve it, I used the Gaussian elimination method (i.e. row reduction method) to manipulate the system of equations into a form that I could more easily see the solution. The equation E3 = 2E3 + E1 didn't really "come from" anywhere, it was just a step I performed to solve the system of equations. We can always take linear combinations of equations without changing the solution to the system of equations. This just happened to be one linear combination I found useful since it introduced a 0 into the 3rd row and first column of the matrix. There are certainly other sequences of steps that would help you get there as well. Hope that helps.
@bergrahm
@bergrahm 8 жыл бұрын
I have a question regarding the third eigen-vector. When I do this, I chose not to choose, as you did, z=3 and got (-1 -5 1)^t how did you know that 'selecting' 3 for z would be the correct answer.I got the other ones using the exact same steps but having z = 1, so I do not think the method is wrong, just confusing last step.Otherwise 10/10 this has helped me so much!
@AdamPanagos
@AdamPanagos 8 жыл бұрын
+Axel Bergrahm Glad the video helped! With respect to your question, the choice for z is completely arbitrary. The final answer for the 3rd eigenvector must have the form [-z; (-5/3)z; z]. This is a valid eigenvector for any value of z. Note that as we change our selection for z, the final vector changes, but he DIRECTION of the vector is always the same. So, another valid choice would be z = 6, which would result in the eigenvector [-6; -10; 6]. Note that this vector is just twice the one I used in the video, but still in the exact same direction. Since the choice for z is arbitrary, there are an infinite number of other valid choices as well. You may want to check the answer of [-1; 5; 1] that you noted. This doesn't appear to match the general form for any value of z that I can figure out. Hope that helps and thanks for watching! Adam
@bergrahm
@bergrahm 8 жыл бұрын
thanks for the great answer! And I'm really sorry for my late reply, this clears things up completely, also I figured out how I was approaching the problem incorrectly. I want to thank you for your great video again and also for answering questions that we have. Big fan!
@AdamPanagos
@AdamPanagos 8 жыл бұрын
+Axel Bergrahm Glad that cleared everything up for you, thanks for watching!
@WAB1980
@WAB1980 7 жыл бұрын
Hi Adam, very nice and useful video. Sorry about the silly question, I would like to know what software are you using to create this video (with matrices, math functions, etc...) Thanks a lot...
@AdamPanagos
@AdamPanagos 7 жыл бұрын
I use an iPad app called Doceri (www.doceri.com) for most of my videos. This app lets you record all your handwriting ahead of time and use "breakpoints" to pause as needed. Once all the writing is down you can "play" the handwriting back while recording audio over it. I find this works much better than trying to write and talk at the same time. I'd definitely recommend checking out the app, I've found it very useful. Hope that helps!
@nitindarkunde132
@nitindarkunde132 5 жыл бұрын
@@AdamPanagos Which iPad will you recommend for creating such videos? Also, which screen recorder, mike you used?
@AdamPanagos
@AdamPanagos 5 жыл бұрын
@@nitindarkunde132 I just use my 2016 iPad pro. I just use the built in microphone and the Doceri app for recording.
@XiaosChannel
@XiaosChannel 8 жыл бұрын
why would you use the root formula on l^2 - 6l +8? that's much slower than just 8=(-2)(-4)...
@AdamPanagos
@AdamPanagos 8 жыл бұрын
Either way is totally fine, I just like sticking with the root formula to be consistent......
@XiaosChannel
@XiaosChannel 8 жыл бұрын
+Adam Panagos Thanks for replying. I would do the same if I'm a computer that never make mistakes. Sadly I'm not...
@AdamPanagos
@AdamPanagos 8 жыл бұрын
Me either....although I wish I was at times...=)
@elysegroenewegen4599
@elysegroenewegen4599 Жыл бұрын
how do u know which eigenvalue is 1, 2 or 3
@abhishekdasgupta4786
@abhishekdasgupta4786 2 ай бұрын
Use the formula -b+or-√(b^2-4*a*c)/2*a to compute the roots of the equation
@madenaarcher9051
@madenaarcher9051 6 жыл бұрын
BIG THANK YOU
@vividflair-mw4xp
@vividflair-mw4xp 6 жыл бұрын
Very helpful.. thanks alot
@AdamPanagos
@AdamPanagos 6 жыл бұрын
You're welcome, thanks for watching!
@modelaircraft12
@modelaircraft12 9 жыл бұрын
fantastic! thank you a lot Sir!
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+franco diaz You're welcome, glad you liked!
@hazzel858
@hazzel858 10 жыл бұрын
great work!!
@ahmadalarnous2787
@ahmadalarnous2787 5 жыл бұрын
you are the besttttttttttttttttttttttt
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Thanks!
@sewanuprety3626
@sewanuprety3626 2 жыл бұрын
Life saver!!
@AdamPanagos
@AdamPanagos 2 жыл бұрын
Glad I could help, thanks for watching. Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam
@shubhampawade2933
@shubhampawade2933 7 жыл бұрын
That was smooth.
@abidmalik3160
@abidmalik3160 9 жыл бұрын
Hi Dear Adam Panagos! can you please help me regarding ''eigenvector centrality"... I am working on a network, having 278 different nodes.. by using R-project I found results... eigenvector column --> ranging from 0.14 to 1 and eigenvalue column contains same value (183.44) against all 278 nodes. ... now needs to interpret... can u help ?
@samimahassan1716
@samimahassan1716 5 жыл бұрын
i got A in first Midterm and the i got F in the second Midterm and now its new year everyone is having fun and im studying to atleast end up with B
@AdamPanagos
@AdamPanagos 5 жыл бұрын
Good luck! Hope your exam went well!
@deepakrana-nu9xp
@deepakrana-nu9xp 7 жыл бұрын
sir please answer me this after getting the final equation you changed the signs of the equation in the eigen values why????????????????????????????????????????????????????????????
@sf2265
@sf2265 9 жыл бұрын
what would happen if in the final equation (1)+(2)+(3) instead of +0 would be positive number?
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+Egor Baranov We're solving the equation det(A-LI) = 0 to solve for the eigenvalues. The left side of this equation is the what I broke down into the parts (1), (2), and (3). If you solve for this equation equal to something other than zero, then you're not solving for the eigenvalues of the matrix. The right side has to be zero. You still COULD solve for this equation equaling something other than zero, but I don't know what the solutions of this equation would mean. Hope that helps, thanks for watching! Adam
@tirbehofficial3387
@tirbehofficial3387 2 жыл бұрын
Am here 8 years later💪
@AdamPanagos
@AdamPanagos 2 жыл бұрын
Eigenvalues and eigenvectors are timeless......
@nuwanatthanayake
@nuwanatthanayake 3 жыл бұрын
Great Sir.
@AdamPanagos
@AdamPanagos 3 жыл бұрын
I’m glad you enjoyed the video! Make sure to check out my website adampanagos.org for additional content (600+ videos) you might find helpful. Thanks, Adam
@joelkaleshi5280
@joelkaleshi5280 8 жыл бұрын
easy to understand. thanks
@abhinetrakumar
@abhinetrakumar 9 жыл бұрын
very nice explanation. thank u.
@jianweiyeow9715
@jianweiyeow9715 6 жыл бұрын
how did u know [-12 -20 12] when checking the answer??
@AdamPanagos
@AdamPanagos 6 жыл бұрын
Since v = [-3; -5; 3] is an eigenvector of A, by definition we know that Av = Lv where L is the eigenvalue associated with eigenvector v. We can compute Av to get [-12; -20; 12] by just performing a matrix-vector multiplication of A with the vector v. Hope that helps, Adam
@tevitaclarke7499
@tevitaclarke7499 7 жыл бұрын
Really good stuff.
@AdamPanagos
@AdamPanagos 7 жыл бұрын
Thanks!
@samfitzpatrick1866
@samfitzpatrick1866 9 жыл бұрын
What if when I reduce the nullspace I get the vector [100, 010, 001] instead of [100,010,000]?
@AdamPanagos
@AdamPanagos 9 жыл бұрын
***** It's actually impossible for that to happen. Since eigenvectors are the null space of the given equation, you MUST end up with a row of zeros. Hope that helps!
@samfitzpatrick1866
@samfitzpatrick1866 9 жыл бұрын
Thankyou for the reply and i understand what you're saying but can't figure out this exam question then because whenever I reduce i dont get a row of zeros. 5 −4 −4 2 −1 0 0 0 −1 Here is the initial matrix, if you wouldn't mind as too helping me and seeing if it can be reduced with a row of zeros. Thankyou
@manasrath773
@manasrath773 9 жыл бұрын
dis video make my day... thanku a lot sir... :)
@AdamPanagos
@AdamPanagos 9 жыл бұрын
+manas rath Glad you liked it, thanks!
@ANUJ509
@ANUJ509 10 жыл бұрын
Gr8 video n explanation too
@samindakularathne
@samindakularathne 10 жыл бұрын
Thanks a lot :) Its surely gonna be useful
@AdamPanagos
@AdamPanagos 10 жыл бұрын
Glad you liked it, thanks.
@bilalon
@bilalon 10 жыл бұрын
great job Man thank you so much
Linear Algebra Example Problems - Eigenvalue Computation #1
4:13
Adam Panagos
Рет қаралды 10 М.
Eigenvalues and Eigenvectors
18:32
Prime Newtons
Рет қаралды 59 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 52 МЛН
Гениальное изобретение из обычного стаканчика!
00:31
Лютая физика | Олимпиадная физика
Рет қаралды 4,6 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 40 МЛН
We Attempted The Impossible 😱
00:54
Topper Guild
Рет қаралды 56 МЛН
Eigenvectors and eigenvalues | Chapter 14, Essence of linear algebra
17:16
Eigenvalues and Eigenvectors
33:57
Steve Brunton
Рет қаралды 57 М.
🔷15 - Eigenvalues and Eigenvectors of a 3x3 Matrix
31:10
SkanCity Academy
Рет қаралды 505 М.
What eigenvalues and eigenvectors mean geometrically
9:09
Dr. Trefor Bazett
Рет қаралды 194 М.
How to STUDY so FAST it feels like CHEATING
8:03
The Angry Explainer
Рет қаралды 2,2 МЛН
Matrices Top 10 Must Knows (ultimate study guide)
46:12
JensenMath
Рет қаралды 84 М.
Eigenvalues and Eigenvectors, Imaginary and Real
12:42
Physics Videos by Eugene Khutoryansky
Рет қаралды 322 М.
21. Eigenvalues and Eigenvectors
51:23
MIT OpenCourseWare
Рет қаралды 657 М.
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 52 МЛН