End-to-End: Automated Hyperparameter Tuning For Deep Neural Networks

  Рет қаралды 31,345

Abhishek Thakur

Abhishek Thakur

Күн бұрын

Пікірлер: 61
@nithinisfun
@nithinisfun 4 жыл бұрын
everytime you code, i learn something new. please never stop coding end-to-end in your videos. thank you, you are amazing!
@priyankasagwekar3408
@priyankasagwekar3408 2 жыл бұрын
This video was really helpful. It was 1 hour bootcamp covering everything about ANN with pytorch- from loading datasets, defining neural network architecture and optimizing the hyperparameters with optuna.
@sambitmukherjee1713
@sambitmukherjee1713 2 жыл бұрын
Super cool Abhishek. Loved every section, especially the "poor man's early stopping"... ;-)
@mikhaeldito
@mikhaeldito 4 жыл бұрын
Thank you for sharing your knowledge. This is an amazing tutorial with no inaccessible jargons. 10/10 highly recommend.
@AnubhavChhabra
@AnubhavChhabra 3 жыл бұрын
Great explanation! Making lives easier one layer at a time :)
@ephi124
@ephi124 4 жыл бұрын
I am writing a research paper in this area. I can't wait!
@Phateau
@Phateau 4 жыл бұрын
Really appreciate the effort you put in the video. This is world class. Thank you
@lokeshkumargmd
@lokeshkumargmd 4 жыл бұрын
This is first time I am watching your video. Very informative !!!. Thanks for sharing 😇
@bhumikachawla9149
@bhumikachawla9149 Жыл бұрын
Great video, thank you!
@shaikrasool1316
@shaikrasool1316 4 жыл бұрын
Every time some things new.. thank you so much
@neomatrix369
@neomatrix369 4 жыл бұрын
Love the video, Hyperparam optimisation is one of my favs and this video tops it all, so now I gotta do this on my model training! :tada:
@malachinelson2622
@malachinelson2622 3 жыл бұрын
you prolly dont care at all but does anyone know a tool to log back into an Instagram account? I stupidly forgot the password. I would love any help you can offer me
@kaysencasen9519
@kaysencasen9519 3 жыл бұрын
@Malachi Nelson instablaster :)
@malachinelson2622
@malachinelson2622 3 жыл бұрын
@Kaysen Casen i really appreciate your reply. I found the site through google and Im waiting for the hacking stuff atm. Takes a while so I will get back to you later with my results.
@malachinelson2622
@malachinelson2622 3 жыл бұрын
@Kaysen Casen It worked and I finally got access to my account again. I am so happy:D Thanks so much, you really help me out!
@kaysencasen9519
@kaysencasen9519 3 жыл бұрын
@Malachi Nelson happy to help =)
@TheOraware
@TheOraware 3 жыл бұрын
wonderful mate , much appreciated for sharing it
@priyankasagwekar3408
@priyankasagwekar3408 2 жыл бұрын
For those looking for loading the models and using them on test dataset: model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval()
@yasserahmed2781
@yasserahmed2781 3 жыл бұрын
what a gem
@jeenakk7827
@jeenakk7827 4 жыл бұрын
That was a very informative session. Is Hyperparameter tuning covered in your book? I think I should buy a copy!! Thanks
@abhishekkrthakur
@abhishekkrthakur 4 жыл бұрын
Yea. it is but if you just want hyperparameter optimization, watch my other video
@RajnishKumarSingh
@RajnishKumarSingh 4 жыл бұрын
Love the fun part👌
@AayushThokchom
@AayushThokchom 4 жыл бұрын
A general question: Is HPO hyped? If ensemble performs much better, should we invest time in HPO given we have limited time? Thoughts!!
@tiendat3602
@tiendat3602 3 жыл бұрын
awesome. But one question that, how to deal with overfit and underfit issue while building the end-to-end fine-tuning model ?
@sindhujaj5907
@sindhujaj5907 2 жыл бұрын
Thanks for the amazing video! Here in this example will the hidden size and dropout change for each hidden layer or remain same for the hidden layers?
@siddharthsinghbaghel441
@siddharthsinghbaghel441 2 жыл бұрын
Do you have any blogs??, I like reading more than watching
@kaspereinarson1061
@kaspereinarson1061 2 жыл бұрын
Thanks for a great video! So just to be clear: you’re using standard 5 fold CV thus optimising for a set of hyper parameters that finds the best loss across (the mean of) all 5 folds. Wouldn’t it be more suitable to split the train data into train / val and then optimize the hyper parameters individually for each fold (nested CV) ?
@kannansingaravelu
@kannansingaravelu 3 жыл бұрын
Hi Abhishek, just landed up on this video. I am not sure whether you addressed this earlier. I am curious to know your preference of torch as against tensorflow or keras.
@kuberchaurasiya
@kuberchaurasiya 4 жыл бұрын
Great. Waiting eagerly. Will you use (sklearn)pipelines?
@abhishekkrthakur
@abhishekkrthakur 4 жыл бұрын
pytorch
@MadrissS
@MadrissS 4 жыл бұрын
Hi Abhishel, very cool video as always, don't you think we should reset the early_stopping_counter at 0 after a new best_loss is found (line 62 at 41:20 in the video). Thanks !
@priyankasagwekar3408
@priyankasagwekar3408 2 жыл бұрын
I have 5 models saved for each fold at the end of execution. If I am not wrong they are essentially the same model saved 5 times. I was looking for a way to load the models and use them on test dataset. Pytorch Documentation shows following way, model = TheModelClass(*args, **kwargs) model.load_state_dict(torch.load(PATH)) model.eval() now initialising the model object (step 1) is an issue in the absence of logs and knowledge of exact architecture of best model. Also you need to define optuna sampler seed to reproduce the results.
@avinashmatani9980
@avinashmatani9980 4 жыл бұрын
Do you have any videos, if I want to learn the basics of what you did at the start. Like for eg: at the start you created a class.
@stilgarfifrawi7155
@stilgarfifrawi7155 3 жыл бұрын
Great video . . . but when can we get a mustache tutorial?
@oligibbons
@oligibbons 2 жыл бұрын
Why do you keep the same number of neurons in every layer? How would you change your approach for deep learning models of different shapes?
@hiteshvaidya3331
@hiteshvaidya3331 3 жыл бұрын
why did you make loss function static?
@HabiburRahamaniit
@HabiburRahamaniit 4 жыл бұрын
Respected sir , I have a question regarding a problem if we have a variable length input dataset and variable length output dataset how would we train or build a neural network model for that dataset?
@renatoviolin
@renatoviolin 4 жыл бұрын
Maybe a Recurrent Neural Network (RNN), that aim to solve this problem of different input size for each sample.
@RajnishKumarSingh
@RajnishKumarSingh 4 жыл бұрын
Sir, What best trial value tells us after every trial? I have used it with lightgbm seems working but doesn't do well with test dataset After every trial I calculated accuracy it is giving me approx 0.9942 for every trial not same but 1st two digit after decimal is same.
@valentinogolob9137
@valentinogolob9137 3 жыл бұрын
shouldn''t we set the early_stopping_counter to zero each time the valid_loss is smaller than the best_loss ?
@marwaneelazzouzi2999
@marwaneelazzouzi2999 3 жыл бұрын
i think we should
@hasanmoni3928
@hasanmoni3928 4 жыл бұрын
How can I buy your book in Bangladesh?
@ankushjamthikar9780
@ankushjamthikar9780 2 жыл бұрын
What is to be done if I want to tune the activation function as well in the neural network? How and where should include the line of code for it?
@jamesmiller2521
@jamesmiller2521 4 жыл бұрын
Where is your GM hoodie? 😤😁
@neomatrix369
@neomatrix369 4 жыл бұрын
Same question from me, why were you not wearing it ;) :P
@abhishekkrthakur
@abhishekkrthakur 4 жыл бұрын
next time :)
@MisalRaj
@MisalRaj 4 жыл бұрын
👏👏
@neomatrix369
@neomatrix369 4 жыл бұрын
Any plans to make videos using other HyperParam Optimisation frameworks? I have a washlist I can share if you like ;)
@abhishekkrthakur
@abhishekkrthakur 4 жыл бұрын
check out my other video :) and send the list too please
@bjaniak102
@bjaniak102 4 жыл бұрын
What is Julian from Trailer Park Boys doing in your thumbnail though?
@abhishekkrthakur
@abhishekkrthakur 4 жыл бұрын
lol
@jonatan01i
@jonatan01i 3 жыл бұрын
You could speed up evaluation if you put the prediction in a torch.no_grad() context.
@mazharmumbaiwala9244
@mazharmumbaiwala9244 3 жыл бұрын
at 34:42, whats the use of `forward` function?
@fredoliveira1223
@fredoliveira1223 3 жыл бұрын
Its method of nn.Module, when you define a model the forward function is where you define how the data should pass through the layers of your neural network to make a prediction
@vasudhajoshi4766
@vasudhajoshi4766 2 жыл бұрын
Hello Sir I followed this tutorial to estimate the hyperparameters for my CNN model. When I am freezing the initial layers of my model, I am facing an error in the line: "optimizer = getattr(optim, param['optimizer'])(filter(lambda p: p.requires_grad, model.parameters()), lr=param['learning_rate'])" where param['optimizer'] is 'optimizer':trial.suggest_categorical('optimizer', ['Adam', "RMSprop"]) and param['learning_rate'] and param['learning_rate']: 'learning_rate':trial.suggest_loguniform("learning_rate",1e-6, 1e-3). The error is IndexError: too many indices for tensor of dimension 1. Can you please explain why I am facing this error?
@Falconoo7383
@Falconoo7383 2 жыл бұрын
I want also for my CNN+LSTM model. If you resolve the error, can you please help me?
@rubenallaert9654
@rubenallaert9654 2 жыл бұрын
Hi, where can I find the code?
@abhishekkrthakur
@abhishekkrthakur 2 жыл бұрын
its more of a code along video.
@nikolabacic9790
@nikolabacic9790 4 жыл бұрын
Did not tune random seed smh
@Prasad-MachineLearningInTelugu
@Prasad-MachineLearningInTelugu 4 жыл бұрын
🧚‍♀️🧚‍♀️🧚‍♀️🧚‍♀️🧚‍♀️
@Raghhuveer
@Raghhuveer 4 жыл бұрын
You said that this is just a dummy example, how to use such methods in some bigger problems, say training a RCNN?
Auto-Tuning Hyperparameters with Optuna and PyTorch
24:05
PyTorch
Рет қаралды 46 М.
Hyperparameter Optimization: This Tutorial Is All You Need
59:33
Abhishek Thakur
Рет қаралды 109 М.
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 43 МЛН
Wait… Maxim, did you just eat 8 BURGERS?!🍔😳| Free Fire Official
00:13
Garena Free Fire Global
Рет қаралды 9 МЛН
風船をキャッチしろ!🎈 Balloon catch Challenges
00:57
はじめしゃちょー(hajime)
Рет қаралды 51 МЛН
Ensembling, Blending & Stacking
1:16:18
Abhishek Thakur
Рет қаралды 21 М.
Mastering Hyperparameter Tuning with Optuna: Boost Your Machine Learning Models!
28:15
Neural Networks Summary: All hyperparameters
17:19
AssemblyAI
Рет қаралды 10 М.
Why Neural Networks can learn (almost) anything
10:30
Emergent Garden
Рет қаралды 1,2 МЛН
Optimizing Neural Network Structures with Keras-Tuner
28:26
Bayesian Hyperparameter Optimization for PyTorch (8.4)
9:06
Jeff Heaton
Рет қаралды 1,9 М.
Family Love #funny #sigma
00:16
CRAZY GREAPA
Рет қаралды 43 МЛН