For those who said it is not transitive, I think a possible misconception of transitivity means that a given number can relate to any other number in the set, but this is not what transitivity means: Definition: A relation is transitive if xRy and yRz, then xRz. Example: To clarify, the definition of x here is the first element of a pair from R1 and so on. For example looking at R1 we can decide x to be any first value from all of the pairs in R1. Let's say we decide that x = 2 The only pair which contains 2 is (2,2). Now, referring to the definition of transitive above, y in this case must be the second item of the chosen pair which is 2. xRy = (2,2) As we know that y = 2, to find z we look for the second item of a pair with 2 in. Again (2,2) is the only pair, so it follows that z = 2. yRz = (2,2) As x = 2 and z = 2, we can see that it holds true that xRz = (2,2) So the definition holds true: if (2,2) and (2,2) then (2,2) x and y would always be the same number though. They could not be different because there is no such pair. Proof: An easy way to check if a matrix is in fact transitive is by the theorem which states: A relation is transitive if and only if R² ⊆ R (In this example it means basically the squared matrix does not contain a 1 anywhere the original matrix does not) In example one the matrix (M) for R1 is just the identity matrix: M= 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 M² = 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 so M² ⊆ M Therefore R1 is transitive.
@hannahferrera5591 Жыл бұрын
This is brilliant explanation. Thank u
@legcramp4475 Жыл бұрын
So are all reflexive a transitive?
@kevinebedi5257 Жыл бұрын
yeah nice breakdown thanks!!
@danichef2 жыл бұрын
For everyone wondering about R1: A relation is transitive if aRb and bRc imply aRc. R={(1,1), (2,2), (3,3)} Let’s consider all the cases where aRb and bRc, There are only three ways this can happen: a=1; b=1; c=1 a=2; b=2; c=2 a=3; b=3; c=3 In every single case, we have aRc. aRb and bRc imply aRc.
@CebelleWhiteFide Жыл бұрын
thank you!!!
@TammanaSultanaFood2 жыл бұрын
for the first example, if something is reflexive, is it automatically transitive and symmetric? you didn't go over that but i know its symmetric but i am struggling with transitive.
@salimelghersse48222 жыл бұрын
it is not transitive i guess it's a mistake
@naveedahmedsoomro43542 жыл бұрын
If something is reflexive it's not mean that it's also a transitive because in some situations reflexive isn't a transitive
@ramanjaneyuluv4792 жыл бұрын
It is transitive because there are no different elements to compare by default we consider it as transitive only even it is same with the symmetric also
@axelsanchez5849 Жыл бұрын
No, they are 3 different properties
@sahilchaudhary2412 Жыл бұрын
@@salimelghersse4822yes it is transitive bcz property says if there is (a,b) belongs to R and (b,c) belongs to R then there should be exists (a,c)......soo here (a,b) and (b,c) is not present soo there is no need to have (a,c) therefore it is transitive.....hope it helps
@sigmapiebonds31912 жыл бұрын
Literally in love with the content. It proved so helpful for me as its my exam tomorrow and found this gem!!! So well explained; our clg teachers dont even gives so precisely
@shreedevis80193 жыл бұрын
You are brilliant sir.Thank you so much for making us understand hard concepts easily.
@masteradil Жыл бұрын
Can you clear R1 please? How is it symmetric and transitive
@damirkoblev43332 жыл бұрын
Thanks a lot! But I still can't understand how can the first relation be transitive if all pairs consist from the same elements and do not connect with other ones?
@nabilwalidrafi56792 жыл бұрын
Transitive Definition: if all pairs consist from the same elements and do not connect with other ones
@zubaerahammed Жыл бұрын
The condition is if (a,b) and (b,c) belongs to R, then (a,c) belongs to R. But in that relation, there is no such (a,b) and (b,c). So, there is nothing to check against for its transitivity. It will not be transitive only if there are (a,b) and (b,c) ordered pairs present and there is no (a,c) present.
@JuliaGugulski Жыл бұрын
Best video on KZbin.
@SHUBHHAM4 ай бұрын
Hii Julia
@gamer-zy1uj3 жыл бұрын
Thankyou sir❤️❤️❤️🙏🙏
@himanshumaurya4283 жыл бұрын
How is the first relation equivalence? How is it transitive?
@Tenaciousplays013 жыл бұрын
Its not transitive,he made mistake
@himanshumaurya4283 жыл бұрын
@@Tenaciousplays01 yeah
@nmm61673 жыл бұрын
I asked about that and someone told me if there isn't condition then its transitive
@trusttheprocess47753 жыл бұрын
No, he is right. If there are simply no conditions in the relation to check if the relation is transitive or not, then it is transitive. In the question, there was no (a,b) and neither (b,c) hence there were no conditions to check (a,c) whether it belonged to R or not, hence it is still transitive.
@himanshumaurya4283 жыл бұрын
@@trusttheprocess4775 oh is that so. thanks mate
@jadibamaniya994810 ай бұрын
Very well explained.. Up to point... ❤
@varzhenenithiyananthan8603 жыл бұрын
Can you solve the question ?? Let R be an equivalence relation on a set A, and let a€A and b€A. Prove that aRb if and only if R(a)=R(b).
@amarsgamer77523 жыл бұрын
Thank u sir 🙏🙏 ❤️😘
@Dandie123 жыл бұрын
Thank you for this amazing explanation!
@faizazam4256 Жыл бұрын
For Equivalance Relation all 3 has to be satisfied or one is enough. As you say R2 in not reflexive and yes they are not but they are symmetric and transitive Are they not equivalence?... Please Reply...🙏🏻
@jaysonjamesalvarez15727 ай бұрын
its like an entire semester in 6 mins thank you man, gotta take this exam in a few hours
@E_Hooligan2 жыл бұрын
Amazing explanation, thanks!
@codex7299 Жыл бұрын
Thank you❤
@LexyMrLee9111 Жыл бұрын
Well explain sir.....
@anupamagarwal39762 жыл бұрын
Sir, How R1 a transitive relation ?
@alibekbalkybekov4809 Жыл бұрын
If there aren't different pairs of elements like (1,2) or (2,3) we don't need to check them them for transitive
@MDEmranAli-rm3cjАй бұрын
but. how can it symmetric. please say me❤
@franktalksprogramming2 жыл бұрын
This guy is great
@jaybansod443 жыл бұрын
Create one discrete mathematics play list
@tajansari6122 жыл бұрын
nice explanation sir
@MathCuriousity Жыл бұрын
Hi may I pose a question: let’s say we have an equivalence relation aRb. Why can’t I represent this within set theory as set T comprising subset of Cartesian product of a and b, mapped to a set U which contains true or false? Thanks so much!!
@tim-duncan2137 Жыл бұрын
Thank you sir
@lubnaansari39482 жыл бұрын
Thank you so much sir
@avirajbhandari9811 Жыл бұрын
Thank you! This is very helpful.
@ahmetkarakartal95633 жыл бұрын
thank you so much
@adithyadinesh98322 жыл бұрын
Approved by Hanena
@amnakhawaja15483 жыл бұрын
how is R1 transitive? there's no c but (a,a)
@adyiebanerjee3 жыл бұрын
Thanks
@kosumeghanameghana33602 жыл бұрын
Excellent explanation sir,tq soo much
@soummossj26242 жыл бұрын
On example one R2 you said it is not reflexive because there is no (1,1) ...there is not a single element of 1 here.. so I think its safe to say 1 doesn't exist in this relation...so its reflexive, symmetric but not transitive. Please take the time to provide correction in the desc.
@ronakop23576 ай бұрын
it is transitive as well, it is an equivalence relation
@karmaxscience36323 жыл бұрын
Upload more videos on data structures and algorithms sir.
@navdeepkaur21312 жыл бұрын
Amazing
@swarnaganesh56932 жыл бұрын
thank you :)))
@nikhilnaidu78992 жыл бұрын
excellent
@samratbarui.2 жыл бұрын
Thanku sir
@ritchmondjamestajarros44392 жыл бұрын
In the first equivalence, why is it symmetric?
@laibahameed42122 жыл бұрын
No,R1 is not an equivalent relation,for equivalence relation a function must hold the properties of reflexive, symmetric, transitive,it doesn't hold transitive relation
@animesh06 Жыл бұрын
Nice
@hannahferrera5591 Жыл бұрын
Is the relation number 4 really not a symmetric? I am confused. What I have learned in class is that if (a, b) element of R, then (b, a) must be an element of R too. And this property does not need to be true for all elements.
@hannahferrera5591 Жыл бұрын
What I am trying to imply is there should be at least one pair of element that is symmetric. In the Video, there is (2,0) in R as well as (0,2). Hence, the relation is symmetric.
@harshitasharma766511 ай бұрын
Property need to be true for all elements.
@madihadrawingacademy4823 Жыл бұрын
how R1 is symetric
@HelloBye-fr7fm2 ай бұрын
r3 is not equivalence (1,1),(1,2) but no (1,2) ,(2,1) is not same as (1,2)
@ABHISHEKSAINI-x7cАй бұрын
i have same doubt brother
@ههخخ-ع3ت3 жыл бұрын
Can Anyone tell me how can I understand AXA ?? I will appreciate if any one can help me in this plz
@akarusardarbekova59272 жыл бұрын
A x A={(a,a), (a,b), (b,a), (b,b)} which has 4 elements.
@sumrelachaunria87762 жыл бұрын
If A={a,b} where a and b are elements then AXA={(a,a),(a,b),(b,a),(b,b)}
@SKP21027 ай бұрын
AXA simply means the Cartesian product from a Non-empty Set A to the same set B which means mapping of every element of A with each element of A. So create one by one all the ordered pairs from setA to set A
@rahelina7176 Жыл бұрын
All of this is good but I do not get how R6 is transitive. Thank you anyways.
@Rocker123uk4 ай бұрын
Correction: R3 is not transitive
@gmoney_swag12748 ай бұрын
I love you
@hhhhhhha9542 жыл бұрын
sorry why AxA is surely to be equivilant
@seradfb3452 жыл бұрын
AXA contains all possible pairs. The matrix for AXA in this case would look like this: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 If the diagonal line from top left to bottom right contains 1s, then it is reflexive. If you put a mirror along the same line and see reflection for all the other entries then it is symmetric. And hopefully you can also see how it can be transitive also. The point is AXA contains all possible pairs of the set
@vipinyadav66616 ай бұрын
Example 1 - Transitive 😂😂😂. But How If (aRb) & (bRc) then must be (aRc) but there is (cRa) . So not Transitive 🤫.
@tanveersingh31962 жыл бұрын
That relation in first seconds of video wasnt transitive
@anesumukombachoto8525 Жыл бұрын
This a lie ,he is a liar
@umgsbed39228 ай бұрын
ما عم افهمكسمس
@hrithikIITR25 Жыл бұрын
😍😍😍😍😍😍😍😍😍😍😍😍😍😍😍😍😍😍😍
@shauny45962 жыл бұрын
R1 is not transitive
@weinerblut6869 Жыл бұрын
What a crummy explanation. Have you shown people here what reflexive, symmetric and transitive mean? Have you done anything else other than say it's obvious yes or obvious no.
@oziomaodonoekuma1427 Жыл бұрын
He did that on the previous videos
@tibetatakan Жыл бұрын
what a dumb comment
@kainaatmakhani65503 жыл бұрын
You are brilliant sir. Thank you so much for making us understand hard concepts easily.