Was very pleased to see numerical integration on this channel. Are you planning to go deeper and, perhaps, discuss Runge-Kutta's methods or backstepping methods?
@nicoletsang8884 Жыл бұрын
oh my gosh I've watched my teacher's lecture and my textbook which left me pretty much confusion after all, but your video made everything so crystal clear for me now!!! I love your explanation and clear note on the whiteboard! Keep it up!
@pragunachandrasekara89224 ай бұрын
Best video on Euler's Method in youtube. I wonder why university lectures over complicate simple things like this.
@TheToolofLight6 жыл бұрын
Me: Hey bprp, wanna go see a movie ? bprp: 3:51 Inspired by that peanut comment
@nicholasleclerc15836 жыл бұрын
Anex_ I made a comment on that word too, but for 2:52
@faanzeonlam32193 жыл бұрын
Wish u a great day
@jgc91995 жыл бұрын
Should've came here first. Went through 4 different channels and I was still confused and just looking at the way you showed it I understood it on the first watch. Ty!
@omarhuda49976 жыл бұрын
Wow, excellent timing. I'm doing a computational course around Euler's method.
@fer-gr8kf4 жыл бұрын
THANK YOU!! im glad i was already subscribed to you because of another video, cause i knew this was gonna be good!! thanks for explaining so simply and concisely :D
@bearpowder88073 күн бұрын
This was a fantastic video, im ready to write my code now. thank you.
@RupeshKumar-hl2jw Жыл бұрын
Thank you so much for simplifying the concept.
@markmanning-o4wАй бұрын
Ive used a similar method ( tables Po, X, Y, Totals ) to solve several differential equations involving acid solutions in a tub... without knowing Euler's method even existed as I haven't studied Diff.Eq. before. At the time it seemed like a very crude method I was using to solve differential equations; but it worked.
@sebastianreina46206 жыл бұрын
Hi Blackpenredpen let me express you that i enjoy much your videos, i have a little dificult with this integral and many people too. the integral is: integral of (x-2)÷((x)*(sqrt(x-1))*(sqrt((x^2)-x+1)))dx
@friedkeenan6 жыл бұрын
I made a program on my calculator to do this
@ffggddss6 жыл бұрын
Excellent intro to numerical integration methods! Making clear the reasoning behind the method. If you're willing & interested, might I suggest a followup video on why this method strays from the true solution, and what are the possible remedies (other than just decreasing the step size, which actually makes the solution worse after some point, due to computational precision limitations)? Of course every method misses the mark to some degree; the goal is to minimize the errors. In this case, we start out each step headed in the right direction, but along the way, F(x,y) is changing, so the resulting direction of each step drifts off by some amount. Of course, I realize that this quest is a bottomless pit; it's a matter of just how deep you want to go in rooting out those errors. Maybe go as far as starting into the various degrees of Runge-Kutta methods? Euler's method is good, because it's simple, easy to implement, and fast. And it can give you a real handle on the DE you're trying to solve, when symbolic methods can't be applied. Anyway, just a thought - suitable for framing or wrapping fish, as _MAD_ magazine used to say . . . ;-) Fred
@sophielee93803 ай бұрын
This is so helpful. Thank you!!
@rojaandia9372 Жыл бұрын
wow you are the best, Thank you
@YLprime3 жыл бұрын
this channel saves me once after once
@YLprime3 жыл бұрын
my math skills=organic chemistry tutor, blackpenredpen and 3b1b
@DarthVader-fu2nr2 жыл бұрын
That DORAEMON into!!!!!
@DhanashreeSanjayIngale3 жыл бұрын
you such a nice guy.....totally in love with the way you teach concepts
@xyd865311 ай бұрын
this is so clear, thank you!
@rob8766 жыл бұрын
If you have y' = F(x,y), then you can derive y'', y''', ...etc. This will give you more accurate values for y1, y2, etc. using y(x+h) = y(x) + hy' + h^2/2! y'' + h^3/3! y''' + ...
@JAS45678 Жыл бұрын
演算法跳出這個 講的非常清楚 學生時期能看到這支影片就不用這麼辛苦了
@pollofrio23013 жыл бұрын
Explained it so well
@minheebae4897 Жыл бұрын
GREAT explanation!!!!
@stevethecatcouch65326 жыл бұрын
And remember, Euler did it all by hand, but still accomplished more than any two of us combined.
@zulfur24526 жыл бұрын
He was even blind for some time.
@shapirogensichwa4 жыл бұрын
Easy to figure out compared to rest if his work
@madihaamanat73663 жыл бұрын
Excellent explanation..👍
@boagokeetshabe15066 ай бұрын
Thank you soo much!!
@AnuarPhysics2 жыл бұрын
Great explanation! Just one question. Which mic is that? :O
@benslimaneyoucef94222 жыл бұрын
Very great Sir
@abdulalhazred59245 жыл бұрын
so you could do it like this in js: function euler(target, step, point, foo) { while (point.x 3 * point.x + point.y));
@drcrash_7 ай бұрын
thank you so much
@christopherokon6596 Жыл бұрын
How did you solve the differential equation?
@MagzhanZhengis9 ай бұрын
Thank you brother
@TheKennethLeung4 жыл бұрын
thank you for the tutorial!
@planckvanilla89976 жыл бұрын
can you also explain the finite elements method?
@godknifetube11 ай бұрын
Many thanks!
@marceloavila876 жыл бұрын
Great explanation, I really liked it. I just didn't get it how you got the y=f(x) from dy/dx. What are the steps you have to follow to solve the dy/dx in order to find that answer y=f(x)?
@blackpenredpen6 жыл бұрын
I will do that in another video. It's called the first order linear diff eq.
@ayman917410 ай бұрын
very helpuful thnx a lot
@gustavomarcelo72503 ай бұрын
Given dy/dx , at the end we want to find y value, right? All numerical integration is to find y?
@josh_up5 жыл бұрын
0 dislikes ... It was awsome bro!
@catalinadavid595311 ай бұрын
thanks!
@s.a38987 ай бұрын
How did you get the actual equation at the end?
@jeanlucas283411 ай бұрын
Best lesson ever in this topic!! Could you make a video about Runge-kutta method? RK4 if you permit me ask. I'm doing a project about it and I need to understand the theory behind it.
@hawraaraheem24492 жыл бұрын
Why we use one step in euler and more steps in Taylor what's that means
@shruutisurana57284 ай бұрын
Anyone else who heard the doraemontheme song playing in the background in the very beginning
@ShenghuiYang6 жыл бұрын
Implicit methods coming soon ;-)
@PianoBoy-my4ne6 жыл бұрын
Can you give a proof of the Basel problem?
@el-hech288910 ай бұрын
Legend
@CyrusGates2 жыл бұрын
Good video brader!
@Adam_mohammed_2 жыл бұрын
Why the lecturer is holding Pikachu ball 😂😂😂😂?!
@zapaya_guy5 ай бұрын
It's his mic
@nicholasleclerc15836 жыл бұрын
2:52 You said: “Y_not[0]” I heard: “Why not ?”
@josh_up5 жыл бұрын
😂
@imperialrecker71113 жыл бұрын
it is actually Y_(naught)
@borg9726 жыл бұрын
can you somehow put a bound on the reminder?
@LeZinZin956 жыл бұрын
Trapezoidal method next :)
@darpan68823 жыл бұрын
Sir your looks awosome
@nick45be Жыл бұрын
Great explanation! Can you make a video on backward euler's method? On youtube anyone explain it good 😢
@10erlangga6 жыл бұрын
Y not is basically why not 😂
@MIMI-CO Жыл бұрын
i love the doraemon in the background
@HarshRajAlwaysfree6 жыл бұрын
Is it for high school students Cuz its sounding not familiar Maybe I need rest
@corbincox79856 жыл бұрын
Super challenge- Show how to solve (2x) to the (x+5)=x to the x
@anjelpatel366 жыл бұрын
What?
@HarshRajAlwaysfree6 жыл бұрын
U use too much Doreamon music It works
@thechirpination7455Ай бұрын
fire
@clyde18206 жыл бұрын
Hey bprp, Can you solve x^x=y for x?
@alejandroramirez59876 жыл бұрын
Check fematika vid
@ericagracesanchez24142 жыл бұрын
👏
@Crazylust5 жыл бұрын
I was expecting Black Pen Red Pen...not Green Pen. lol
@areejmakhamra401611 ай бұрын
You must be patient and organised 😅😅
@bobengelhardt8566 жыл бұрын
The Method seems kinda' obvious - had nobody thought of this before Euler?
@bobengelhardt8566 жыл бұрын
@dbf2017 Fafalios --- No, I hadn't. But that's putting the bar as low as it can go. I'm not a math-y and I certainly don't remember any if the diff-eq stuff I had in a course 60 years ago. It does seem that someone who was a mathematician and who worked with differential equations would have come up with this before Euler.
@ffggddss6 жыл бұрын
Maybe it was just a question of "getting around to it" - calculus itself was still kinda young, and differential equations even more so. Fred
@l3igl2eaper6 жыл бұрын
Now do the same problem with the RK4 method! hahaha.... haha...... ha..... ugh.