evaluating a double integral using the Jacobian

  Рет қаралды 12,653

bprp calculus basics

bprp calculus basics

Күн бұрын

Пікірлер: 23
@Ninja20704
@Ninja20704 Жыл бұрын
I would really appreciate if you did more calculus 3 videos. I just finished high school and want to get a grasp of multivariable calculus and also more differential equation techniques before I start university. Really appreciate your content.
@matts2565
@matts2565 Жыл бұрын
I agree, I felt so lost and alone without (as many) BPRP videos during calc 3 lol
@francompalmieri
@francompalmieri 6 ай бұрын
@@matts2565 Professor Leonard came in clutch though lmao
@matts2565
@matts2565 6 ай бұрын
@francompalmieri yes and no; I love his videos but the whole point of KZbin for me is for when I explicitly *don't have time* to watch through an entire hour+ long lecture
@francompalmieri
@francompalmieri 6 ай бұрын
@@matts2565 yeah in my case I used his videos as lectures pretty much so I get what you mean, I understood him much better than my professor. bprp helped me massively in my first calculus classes in uni with his million examples of integrals and series though, forever grateful for that haha.
@larryevans2806
@larryevans2806 Жыл бұрын
Best damn math teacher I ever met and I've been around awhile!!!!
@scottmiller2591
@scottmiller2591 Жыл бұрын
I like to think of such problems like this: 1. You want to know the weight of a piece of rubber the shape of the hatched area on the curve. The rubber sheet weighs f(x,y) unit per area, that is, the areal density. 2. It would be much simpler if the area is transformed to a rectangular area in U,V coordinates. 3. In the process of transforming the shape of the area, the rubber sheet is stretched and/or compressed so the areal density changes; the Jacobian is the new areal density of the rubber sheet once it has been transformed into a rectangle. Then it simply becomes a matter of figuring out how to transform to a rectangle (the substitution of variables), integrate the function using the new areal density from the Jacobian, and figure out the corner coordinates of the rectangle (the new limits).
@joansgf7515
@joansgf7515 Жыл бұрын
Note that d(u,v)/d(x,y)=(d(x,y)/d(u,v))^{-1}, so it'd have been easier to compute first d(u,v)/d(x,y), which is -2(y/x)=-2u and then to get d(x,y)/d(u,v) by "flipping" d(u,v)/d(x,y), therefore -1/2u.
@conanedojawa4538
@conanedojawa4538 Жыл бұрын
The vedio is very good . And I want to know how the Jacobian method works? I need a simple proof for this method
@Ninja20704
@Ninja20704 Жыл бұрын
Heres a video by Dr Trefor Bazett where he gives a explanation on why the jacobian is what it is. kzbin.info/www/bejne/rYapXp-vrryji8U (Skip to 6:44) It was very helpful to me, i hope its helpful to you too
@waziakbar9991
@waziakbar9991 Жыл бұрын
I’m all for the calc 3 vids 😊
@chessthejameswei
@chessthejameswei Жыл бұрын
What a coincidence that I just learned this today!
@cesarmoreno987y
@cesarmoreno987y Жыл бұрын
You should do more higher level calc topics!
@Chrisuan
@Chrisuan Жыл бұрын
Do you have a video on the basics of Jacobian, explaining why this process works?
@othila9902
@othila9902 Жыл бұрын
I can't explain the whole process, but if you notice in the video he talks about "changing rectangles", basically rectangles that do not have the same width. The Jacobian allows you to integrate a rectangular space that's equivalent to the original curved one (like this example). If you notice, the jacobian is pretty similar to the u substitution that you use for integrals of one variable, but in this case it's like u substitutuon for many variables
@wileyst.germain7374
@wileyst.germain7374 Жыл бұрын
Would be much easier to do difference of integrals for each interval between intersections?
@torok2001kristofaron
@torok2001kristofaron Жыл бұрын
Wonderful derivation. 🙌
@ShanBojack
@ShanBojack Жыл бұрын
I am wondering more about how did you get the first four relations between X and Y
@louiejohncastillo9822
@louiejohncastillo9822 Жыл бұрын
the answer in wolfram alpha is (ln 2)/2+ln 16 = 3.119
@d.h.y
@d.h.y Жыл бұрын
This was such a wonderful video !!! ,,,and could somebody elaborate why the Jacobian determinant in 6:54 has to be an absolute value?? 🙀🙀
@d.h.y
@d.h.y Жыл бұрын
@@joansgf7515 Thank you for the link! I will check it !!!
@Bruh-bk6yo
@Bruh-bk6yo Жыл бұрын
man😱
@Zeke-_-Geekin
@Zeke-_-Geekin Жыл бұрын
Hey, im a high school student trying to learn about calculus, could you tag me in your introductory video for Calculus/Pre Calc
Change of Variables and the Jacobian
13:08
Serpentine Integral
Рет қаралды 321 М.
evaluating a double integral, quick and easy (but change the order first!)
4:29
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН
Chain Game Strong ⛓️
00:21
Anwar Jibawi
Рет қаралды 41 МЛН
how Richard Feynman would integrate 1/(1+x^2)^2
8:53
blackpenredpen
Рет қаралды 534 М.
The Bernoulli Integral is ridiculous
10:00
Dr. Trefor Bazett
Рет қаралды 716 М.
I want all trig functions in one integral!
7:31
blackpenredpen
Рет қаралды 726 М.
a double integral,  3 ways
18:51
blackpenredpen
Рет қаралды 140 М.
How Gauss solved the integral of e^(-x^2) from 0 to infinity
8:15
bprp calculus basics
Рет қаралды 49 М.
This OP trick solves IMPOSSIBLE integrals!
8:28
Maths 505
Рет қаралды 7 М.
Line Integrals Are Simpler Than You Think
21:02
Foolish Chemist
Рет қаралды 150 М.
Change of Variables Example for Double Integral
20:24
Math For Life
Рет қаралды 17 М.
Only FEYNMAN'S TRICKS can help solve this TERRIFYING INTEGRAL
14:17
Quando A Diferença De Altura É Muito Grande 😲😂
00:12
Mari Maria
Рет қаралды 45 МЛН