Evaluating A Radical Expression | Two Methods

  Рет қаралды 5,233

SyberMath

SyberMath

Күн бұрын

Пікірлер: 22
@denkid4478
@denkid4478 11 ай бұрын
Let y=✓x So y^2-5/y=6 Giving y^3-6y-5=0 Overall. Can be written as y^3+1-6(y+1)=0 using y^3+1=(y+1)(y^2-y+1) and taking common terms together one gets (y+1)(y^2-y-5)=0 As y cannot be -1 (y=✓x y^2-y=5 which one recognises as x-✓x=5
@ronbannon
@ronbannon 11 ай бұрын
Very nice. Will share this with my students!
@SyberMath
@SyberMath 11 ай бұрын
Awesome! Thank you!
@NadiehFan
@NadiehFan 11 ай бұрын
I solved it by manipulating the given equation x − 5/√x = 6 Multiplying both sides by √x we have x√x − 5 = 6√x x√x − 6√x − 5 = 0 (x√x + 1) − 6(√x + 1) = 0 (√x + 1)(x − √x + 1 − 6) = 0 Since √x + 1 ≠ 0 this implies x − √x + 1 − 6 = 0, that is, x − √x = 5. The converse derivation is a lot simpler: if we are given that x − √x = 5 then dividing both sides by √x gives √x − 1 = 5/√x and therefore x − 5/√x = x − (√x − 1) = x − √x + 1 = 5 + 1 = 6.
@SyberMath
@SyberMath 11 ай бұрын
Nice
@scottleung9587
@scottleung9587 11 ай бұрын
Nice!
@SyberMath
@SyberMath 11 ай бұрын
Thanks!
@giuseppemalaguti435
@giuseppemalaguti435 11 ай бұрын
La prima equazioni è una cubica con soluzioni √x=-1(non accettabile)..√x=(1+√21)/2 (accettabile)...√x=(1-√21)/2(non accettabile)...perciò ?=(11+√21)/2-(1+√21)/2=5
@uwelinzbauer3973
@uwelinzbauer3973 11 ай бұрын
I came to the cubic equation. Trying to plug in x1=1 worked, then I divided the polynomial by (x-1), got a quadratic equation, delivering x2,3=(11±Sqr(21))/2 Now we arrive at the discussion: are we allowed to give root of x a negative sign? If yes, then we have three solutions for x. And that would mean six different answers to x-sqr(x). If no, only one solution for x: x=(11+sqr(21))/2≈7.79 and x-sqr(x)=5 Thanks for the interesting videos, Greetings.
@uwelinzbauer3973
@uwelinzbauer3973 11 ай бұрын
Important attachment to above / error correction: x-sqr(x) does not have 6 different answers, a further check showed that there are only 5 different answers, because the value 5 is appearing twice Sorry, I have to apologize for the mistake. - BTW: is (-1) a root of 1? To my opinion it might be, what do you think? If no: why?
@N79871
@N79871 11 ай бұрын
Nice
@SyberMath
@SyberMath 11 ай бұрын
Thanks
@mohammadazadi4535
@mohammadazadi4535 9 ай бұрын
با در نظر گرفتن -x_x^1/2بعنوان جمله u وضرب مزدوج آن در دوسوی معادله اول جمع دوطرف معادله اول با آن و... جواب بدست آمد مسله جالبی بود.
@kianmath71
@kianmath71 11 ай бұрын
5
@rakenzarnsworld2
@rakenzarnsworld2 11 ай бұрын
Answer: 5
@mcwulf25
@mcwulf25 11 ай бұрын
In your first cubic, x=1 is a solution. However, it doesn't work in the original equation because it arises from a negative square root.
@bobbyheffley4955
@bobbyheffley4955 11 ай бұрын
Extraneous solution
@chaosredefined3834
@chaosredefined3834 11 ай бұрын
Before watching the video: Let t = sqrt(x) Therefore, we have t^2 - 5/t = 6, and we want to find y = t^2 - t t^2 - 5/t = 6 t^3 - 5 = 6t t^3 - 6t = 5 Now, I had a plan here, but then I noticed that t = -1 is a root of that equation. t^3 - 6t - 5 = 0 t^3 + t^2 - t^2 - t - 5t - 5 = 0 t^2(t+1) - t(t+1) - 5(t+1) = 0 (t^2 - t - 5)(t + 1) = 0 t^2 - t - 5 = 0 t^2 - t = 5 y = 5 OR t+1 = 0 t = -1 t^2 = 1 t^2 - t = 1 - (-1) = 2 So, y = 2 or y = 5.
@chaosredefined3834
@chaosredefined3834 11 ай бұрын
wait. t = -1 is a superfluous root. So, y=5 is the only solution.
@-basicmaths862
@-basicmaths862 5 ай бұрын
Actually 2 is only real answer. √x=-1 satisfied above equation.if x=1 then √x=±1
Let's Solve An Infinite Radical Equation
8:14
SyberMath
Рет қаралды 6 М.
A Radical Exponential Equation | Algebra Challenge
9:49
SyberMath
Рет қаралды 4,8 М.
which method do you prefer??
20:34
Michael Penn
Рет қаралды 11 М.
Let's Solve A Special Radical Equation
9:53
SyberMath
Рет қаралды 4,7 М.
Sum from 1 to infinity of 1/(k^2+1)
7:16
mathemagical
Рет қаралды 8 М.
Solving A Functional Equation
12:35
SyberMath
Рет қаралды 5 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
a nice functional equation
11:25
Michael Penn
Рет қаралды 12 М.
Math for fun, sin(z)=2
19:32
blackpenredpen
Рет қаралды 1,8 МЛН
how is e^e^x=1 solvable??
6:49
blackpenredpen
Рет қаралды 743 М.
Summing An Interesting Infinite Series
9:33
SyberMath
Рет қаралды 1,8 М.
Let's Solve A Cool Exponential Equation
8:47
SyberMath Shorts
Рет қаралды 3,6 М.