The simplest way to solve P=11, a=5 *We need to check P should always be a prime number ! * Formula=] a^p-1 congruent (1modp) 5*11-1=(1mod11) 5*10=(1 mod11) The rule for fermat Little problem is The number which is in the left should always be larger than the number which is right of equal to sign So in this case its not satisfying the given condition so we divide it using modular methods The number 5 is subtracted, with p and written as -6 on the right hand side... -6*10=1mod11 Now we split the power of ten As (2*5) (-6^2)(*5)=1mod11 36(*5)=1mod11 Now 36mod11=3 3(*5)=1mod 11 Mod of 3*5 mod 11= 1 Now 1=1mod 11 Its congruent P=11 and a=5 proved !
@shivamkandhare88972 жыл бұрын
Fermat's theorem holds true for p=11, a=5 And thanks for this presentation!
@sanika6916 Жыл бұрын
NESO ACADEMY YOU ARE LITERALLYY A SAVIOUR!!!! THANKYOU SO MUCH.
@rajeshprajapati48632 жыл бұрын
5^10 ≡ 1 mod 11 5^(2*5) ≡ 1 mod 11 3^5 ≡ 1 mod 11 243 ≡ 1 mod 11 (Valid) Therefore, FLT holds true for p=11 and a=5.
@sivasaigunta89242 жыл бұрын
3 ala vachindi bro miku
@ashutoshpatil73302 жыл бұрын
@@sivasaigunta8924 how ??
@janpost8598 Жыл бұрын
@@ashutoshpatil7330 5^(2*5) = (5^2)^(5) now 5^2 ≡ 3 mod 11. 5^(2*5) ≡ 1 mod 11 (5^2)^(5) ≡ 1 mod 11 (3)^(5) ≡ 1 mod 11 Hence 3^5 ≡ 1 mod 11
@lakshitapatnaikuni21432 жыл бұрын
12 is congurent to 1 (mod 11) which shows Fermat's theorem holds true for p=11,a=5 Thanks for the explaination:)
@Stocks_Technical_Analyser Жыл бұрын
Your point shows some deep knowledge. Can you please explain it ?
@dsalgos10 ай бұрын
@@Stocks_Technical_Analyser I tried solving step by step and one of them is 12 = 1 (mod 11) 5^10 = 1 (mod 11) => 3^5 = 1 (mod 11) => 81 x 3 = 1 (mod 11) => 12 = 1 (mod 11) Proved.
@user_unknown043 ай бұрын
Answer for the HW problem in the easiest way possible: 5^10 = 1 (mod 11) will first find 5^1 mod 11 = 5 now 5^2 mod 11 = 3 now 5^4 is simply 5^2 x 5^2, that is 3 x 3 = 9 now 5^8 is simply 5^4 x 5^4, that is 9 x 9 = 81 we need 5^10 now, we can write it as 5^8 x 5^2, which is 81 x 3, gives us 243 now 243 mod 11, will result in 1 !. Hence fermat's little theorem satisfied.
@Ritesh_kumar773 Жыл бұрын
Given p=11 ,a=5 a^p-1 = 1(mod11) 5^11-1 =1(mod11) 5^10 =1(mod11) -6^10 =1(mod11) {5-11= -6} -6^5*2 =1(mod11) {6^5=7776 is ÷ by 11 and remainder is 10 10^2 =1(mod11) 100 =1(mod11) {100÷11 and remainder should be 1}
@Nejiyanesrin-12 ай бұрын
P=11 a=5 1)p is prime 2)a is an integer not divisible by p 11 a^p-1=1modp 5^10=1mod11
@thanmaijami89623 жыл бұрын
Fermat's theorem holds true for p=11, a=5
@senthilnathan32003 жыл бұрын
How to do it?
@senthilnathan32003 жыл бұрын
How to do it?
@BhojpuriWorld143143 жыл бұрын
how
@neelamyadav76092 жыл бұрын
@@senthilnathan3200 5^10=1(mod 11) 5^5*2 = 1(mod 11) (31125)^2 = 1(mod 11) 9765625 =1(mod 11) after 887784 times it gives the reminder 1 so this is value is true.
@neelamyadav76092 жыл бұрын
it anyone have more simple way please suggest.
@sufiyansyed284611 күн бұрын
Excellent sir ❤❤❤❤
@markuche1337 Жыл бұрын
Very great course thank you Neso Academy ❤
@СанжарАлманов-т3с Жыл бұрын
Thank you man, really helpful video!
@G.VISHNUTEJA24BSD7022 ай бұрын
excellent explanation
@sahilanand302 жыл бұрын
3:28 anyone noticed Indian flag? 🇮🇳
@monicabattacharya64163 жыл бұрын
please complete Database management systems fastly. I have in my current semester 😩
@BhojpuriWorld143143 жыл бұрын
🖐🏼
@dharavathsrikanth8477 Жыл бұрын
😅😅😅
@manas-tapas-Art Жыл бұрын
Hii..
@Junedwrites3 жыл бұрын
Love you sir 🤗 , from🇮🇳🇮🇳🇮🇳
@alan_johnson_2 жыл бұрын
He is indian
@danieldanmola82666 ай бұрын
Fermat little theorem holds for a= 5 and p=11 By the Fermat little theorem a^(p-1)=1(mod p) 5¹⁰=1(mod 11) Let's check using the Euler phi totient function Which states that a^phi(n)=1(mod n) Provided that GCD of (a, n)=1 And in this case a=5 and n=11 Thus ::: 5^phi(11)=1(mod 11) Since the phi(11)=11-1=10 5¹⁰=1(mod 11) Thus Fermat little theorem holds
@victorymindset-13 ай бұрын
can someone say how -2^(4*3) congruent 1 (mod 13) changes to 3 ^ 3 congruent 1 (mod 13)
@balajimetla3886 Жыл бұрын
nice explanation sir. continue like in this way
@chamin111 Жыл бұрын
Thank you sir, nice explanation
@ANMOLKUMAR-ix8di Жыл бұрын
p=11 , a=2 , It holds fermet's little theorem (homework question answer)
@AkashKumar-ff6mx2 жыл бұрын
THANKS FOR THIS VIDEO
@IMdrummerTab Жыл бұрын
This is great! Thanks❤
@AkashKumar-ff6mx2 жыл бұрын
Thanks for this video
@shivambhardwaj11373 жыл бұрын
Fermat theorem true value for p=11 and a=5
@BookwormUnited Жыл бұрын
For home work question I guess p=11 and a=5 so we are using a^p-1=1 mod p 5^11-1=1mod 11 5^10=1 mod 11 then 5 is smaller than 11 so we are reduce 11 from 5 is 6 -6^10=1 mod 11 -6^5*2 = 1 mod 11 here 6^5 = 7776 then divide by 11 so we will get remainder 10 10^2 = 1 mod 11 100 = 1 mod 11 here 100/ mod 11 = 1 so 1= 1 hence proved .. if it's correct like this comment ..😊
@jesusbosch2720Ай бұрын
Mmm I am not satisfied this video. I see exercises in my classbook that ask me to calculate thibgs like 97 power 200 + 97 power 201 mod 13 (or similar operations with huge exponents). I am explicitly asked to use fermat’s little theory (not the modular exponentiation method used in previous videos). Any advice please?
@ajay.24612 жыл бұрын
P=15 and a=4 it's not holding false it's holding true
@aathavang55058 ай бұрын
How to solve by using Fermat's theorem, if the question is 27^452 mod 113?
@Agenkia10 күн бұрын
Where is the minus in -2^4*3?
@gaurav561crazy53 жыл бұрын
Start the series of calculus
@garunkumar89212 жыл бұрын
Fermat's Theorem hold true for p=11 and a=5 sir
@tiamiyuyusuff234 Жыл бұрын
Fermat's little theorem holds for p=11 and a=5.
@KuladeepGompa Жыл бұрын
why did you take -2 in the place of 11 in the second example
@love_in_nature861611 ай бұрын
Because 11 mod 13 is 11 or -2, among them min(abs(-2, 11)) is considered... So it is -2.
@nasserkhamis1690 Жыл бұрын
is there a way to check my answer using a calculator ?
@தமிழன்-ர8ள Жыл бұрын
Hold true p=11 and a=5
@angelicaaquino21592 жыл бұрын
What if p is not prime number?
@zanti41322 жыл бұрын
If p is not prime, you will usually get a^(p-1) ≠ 1 mod p, but not always. For example, if a = 2 and p = 11 × 31 = 341, you can show 2³⁴⁰ = 1 mod 341 as follows: 2³⁴⁰ = (2¹⁰)³⁴ = 1024³⁴. However, 1024 = 1 mod 341, therefore 2³⁴⁰ = 1³⁴ mod 341 = 1 mod 341, q.e.d. Hence, once in a great while a composite number gives the same result as a prime number for certain values of a, making the composite number what's known as a pseudoprime in base a. There are even composite numbers for which a^(p-1) = 1 mod p regardless of the value chosen for a. These numbers are known as Carmichael numbers, the smallest of which is 561.
@mihirmathur58552 жыл бұрын
Fermat's Theorem holds true for p=11 and a=5
@kowshik_reddy_iguturi Жыл бұрын
5^10=1mod11 Rem=1 True
@udayakiran8965 Жыл бұрын
Fatmet theorem hold ? P=3, a=3
@vrajpatel83022 жыл бұрын
Yes
@KaivalyaGawande5 ай бұрын
Who are from class 11th 😅
@idledogtunes3 ай бұрын
Me
@BRIDGETNGATO3 ай бұрын
Me 😂😂❤❤🇨🇲🤴
@mohankumarmuthukumar2949Ай бұрын
Fermat theorem true for given value
@Utkarshkushwaha-ld8xh3 ай бұрын
Yes bcz remainder is 1 Buddy
@vaibhavsharma9318 Жыл бұрын
5^10 = -6^10 = -6^2*5 = 12^5 = 1^5 If you think how 12 becomes 1 ,the reminder of 12÷11 or 11÷12 😅 is 1 Then the reminder of 1÷11 or 11÷1 🤫 is 1 So the fermat theorem is true Hence proved
@explorer4793 Жыл бұрын
how 6^2 becomes 12
@vaibhavsharma9318 Жыл бұрын
@@explorer4793 I can't remember how it becomes 12 , sorry...
@hanishvenkat949610 ай бұрын
super
@chandukmit2 жыл бұрын
True, tqs
@karunkarna93973 жыл бұрын
nice
@raghavsingh42573 жыл бұрын
1
@BhojpuriWorld143143 жыл бұрын
fermat's theorem does not hold ture for p=11 and a=5