Field Extension & Splitting Field Examples | Adjoin Roots: ℚ(√2), ℚ(√3), ℚ(√2,√3)=ℚ(√2)(√3)

  Рет қаралды 2,084

Bill Kinney

Bill Kinney

Күн бұрын

Пікірлер: 16
@uzferry5524
@uzferry5524 10 ай бұрын
thank you, I really appreciate the slower pace and all the examples.
@billkinneymath
@billkinneymath 10 ай бұрын
You're welcome! Thanks for watching!
@girlsinacoma
@girlsinacoma 6 ай бұрын
Gallian book seems to gloss over these examples in extension field chapter. Thanks for diving in.
@billkinneymath
@billkinneymath 6 ай бұрын
You're welcome! Yes, I think his philosophy is that the readers should check it on their own.
@emmettdja
@emmettdja Ай бұрын
It is also cool to note that Q adjoin sqrt(3) adjoin sqrt(2) is a splitting field for x^2-6 since sqrt(6) is in that field. sqrt(2) * sqrt(3) = sqrt(6). it is also minimal, 4 dimensional vector space.
@billkinneymath
@billkinneymath 29 күн бұрын
Very cool!
@wenzhang365
@wenzhang365 4 ай бұрын
This really helps. BTW, there seems to be an 8 min segment missing at 29:00. Thank you
@billkinneymath
@billkinneymath 4 ай бұрын
So glad it helped! Yes, I edited that part out because I was talking with the students about some other things during that time.
@wenzhang365
@wenzhang365 4 ай бұрын
@@billkinneymath Thank you. I didn't miss anything.
@GiovannaIwishyou
@GiovannaIwishyou Жыл бұрын
This is such a good content, too bad I couldn't find something like this 9 years ago (2014 when I had abstract algebra last time as the undergraduate student )😅
@billkinneymath
@billkinneymath Жыл бұрын
Glad you are able to enjoy it now anyway!
@arcturusgd
@arcturusgd 8 ай бұрын
I've come across this before Because of a specific video about extending sets. Back then it was impossible, but now it is. This was a different thing but it s like joining or adding a field of new elements K to old elements M For set A, A(M) = {K1, K2, K3...Kn, MK1, MK2, MK3, MKn...} But also can be Kn + Km*M
@doodleyeon
@doodleyeon Жыл бұрын
Thank you so much for this great content! Question: Why is Q(2^(1/3))={a + 2^(1/3)*b + 2^(2/3)*c : a, b, c in Q}? I understand this is true when I factor x^3 - 2 but why is it Q(2^(1/3)), and not Q(2^(1/3), 2^(2/3))?
@billkinneymath
@billkinneymath Жыл бұрын
You're welcome! Those fields are actually equal to each other. The reason is that, Q(2^(1/3)), being a field and containing 2^(1/3), also contains its square 2^(2/3) (by closure under multiplication). So, 2^(2/3) has "already" been adjoined by adjoining 2^(1/3) to Q.
@doodleyeon
@doodleyeon Жыл бұрын
@@billkinneymath Oh I cant believe I missed that! Then can the said simple extension field be written like this: Q(2^(1/3))={a + 2^(1/3)*b : a, b in Q} instead of in my previous comment?
@billkinneymath
@billkinneymath Жыл бұрын
@@doodleyeon No. The reason is that the degree of the minimal polynomial of 2^(1/3) is 3. So as a vector space over Q, elements have to be written as linear combinations of (2^(1/3))^0 = 1, 2^(1/3), and (2^(1/3))^2 = 2^(2/3).
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН
REAL or FAKE? #beatbox #tiktok
01:03
BeatboxJCOP
Рет қаралды 18 МЛН
302.S2a: Field Extensions and Polynomial Roots
10:11
Matthew Salomone
Рет қаралды 19 М.
Complex Numbers in Quantum Mechanics
19:57
Richard Behiel
Рет қаралды 189 М.
Galois theory: Field extensions
27:30
Richard E Borcherds
Рет қаралды 40 М.
Math News: The Fish Bone Conjecture has been deboned!!
23:06
Dr. Trefor Bazett
Рет қаралды 218 М.
Degree of a Field Extension
10:19
Molly Fenn
Рет қаралды 804
302.S5: Splitting Fields
18:08
Matthew Salomone
Рет қаралды 16 М.
The Genius Way Computers Multiply Big Numbers
22:04
PurpleMind
Рет қаралды 294 М.
The strange cousin of the complex numbers -- the dual numbers.
19:14
one year of studying (it was a mistake)
12:51
Jeffrey Codes
Рет қаралды 187 М.
Extending the Harmonic Numbers to the Reals
15:17
Lines That Connect
Рет қаралды 351 М.
Мясо вегана? 🧐 @Whatthefshow
01:01
История одного вокалиста
Рет қаралды 7 МЛН