Superb as usual PreMath Teacher is really good What I like the most is his way of taking time & patiently explaining so that even a Maths Hater will understand & start likeing Maths Respects to you Maths Guru ji. Keep up this good work
@PreMath3 жыл бұрын
So nice of you Pracash dear. You are awesome. Thank you! Cheers! Stay blessed😀 Love and prayers from the USA!
@СергейГришин-е4и3 жыл бұрын
Решение гораздо проще, а данные о равенстве отрезков АВ и ВС излишне.
@jayquirk22973 жыл бұрын
Nice problem and great solution, as always. Here's an alternative that uses less trigonometry. Mirror the original quarter circle to create a circle with the triangle replicated four times. The outer edges of the four triangles will create a square inscribed within the circle. Each side of the square will sqrt(3) + 1 in length. (the a and b sides of the triangle) From there, the radius is the center of the square to the outside diagonal, r= side(length)/2 * sqrt(2) = (sqrt(3)+1)*sqrt(2)/2 . Then use standard area of a circle divide by four and the equation simplifies to pi*(2+sqrt(3)/4 and you can use a calculator to get the rest of the way.
@PreMath3 жыл бұрын
Very well done. Thank you Jay! Cheers! Keep rocking😀
@mahatmapodge3 жыл бұрын
That's brilliant, I did it the same way as the video, but for triangle ADB, but yours is a much more elegant solution, the diameter of the circle is the hypotenuse of an equilateral right triangle with side length (AD)+(DC) that's elegantly simple, I like it
@youngboydan41533 жыл бұрын
Very cool! Thanks for sharing!!!
@waheisel3 жыл бұрын
I used the cosine sum formula. I like your way, more elegant.
@josemath68282 жыл бұрын
Facil por trigonometría
@buxeessingh25713 жыл бұрын
You can also get the radius BD at the end by Ptolemy's theorem. Quadrilateral ABCD is cyclic because its opposite angles are supplementary.
@PreMath3 жыл бұрын
Good idea Thank you Buxees! Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Correcto amigo.
@timeonly14012 жыл бұрын
Beautiful and elegant way to get the radius! I only learned about Ptolemy's theorem, cyclic quadrilaterals, their properties, etc., because of this post (We covered quadrilaterals in high school geometry, but I don't think we covered the cyclic stuff).Thx! Those ancient geometers and mathematicians continue to amaze and astound me!! The longer I live, the smarter these guys get! ;-)
@ProfessorDBehrman3 жыл бұрын
There is a slight error: cos 105 degrees = -0.25882, NOT -0.256. The final answer should be: 2.9311
@phungpham17252 жыл бұрын
Thank you so much for your nice explanation. Honestly, I forgot all about trigonometry, I don't know the Ptolemy's theorem either! So I find a way to solve the problem using pure geometry: We know that AC=2, BC= sqrt of 2, CD=1, now we need to calculate the radius BD: Just draw the circle of which the diameter is AC, so this circle goes pass point A and D-----> the angle BDC=angleBAC= 45 degrees( having the same arc BC), and the angle DBC=angle CAB=30 degrees ( having the same arc CD). Calculating BD: consider the triangle BCD: drop the height CH to BD, now we have 2 special right triangles: BHC is a 30-90-60 triangle so BH = 1/2 (sqrt of 2)x sqrt of 3 CHD is a right isosceles triangle so DH = 1/2(sqrt of 2) Thus BD = 1/2 (sqrt of 2)x sqrt of 3 + 1/2 (sqrt of 2) = (sqrt of 3+1)/sqrt of 2 sq BD= 2+ sqrt of 3 The area of the quarter circle= 1/4 x pi x (2+sqrt of 3) =2.931 sq units
@ОльгаСоломашенко-ь6ы3 жыл бұрын
This will be more accurate. Cos(105)=cos(45+60)=cos(45)cos(60°)-sin(45)sin(60)=√2/2*1/2-√2/2*√3/2=(√2-√6)/4. r2=2+1-2*√2*(√2-√6)/4=3-(4-4√3)/4=3-1+√3=2+√3=2+1.732=3.732.
@PreMath3 жыл бұрын
Wow. Great job Olga Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@заводмихельсона3 жыл бұрын
Вы могли это решить не выходя за рамки 8 класса.Кроме того,что катет против угла 30 градусов вдвое меньше гипотенузы и теоремы Пифагора здесь ничего и не надо.Зачем вы им подсказали,как найти косинус суммы.Теперь они посвятят этому следующий ролик.И да,есть решение этой задачи старое,как яйцо динозавра,для произвольного угла.Глобальное дополнительное построение,и ничего считать не придется,от слова совсем.
@silvaadamyan90983 жыл бұрын
cos(105?) = cos(90? + 15?) = - sin(15?) ~ - 0,2588 - this way is much simpler
@josemath68282 жыл бұрын
Muy bien.
@ШурикФумо2 жыл бұрын
The shame and the degradation of the science, i guess. My teacher would smack me upside the head for the approximate answer).
@JoshiSings_13453 жыл бұрын
A good teacher can inspire hope, ignite the imagination, and instill a love of learning. you are such a great teacher sir
@PreMath3 жыл бұрын
Wow, thank you Sai So nice of you dear Keep rocking😀 Love and prayers from the USA!
@josemath68282 жыл бұрын
Mu ybien.
@youngboydan41533 жыл бұрын
I love your videos! Thank you. Here was my process: Dropped an altitude (let’s call it DE) from D to line BC creating a right triangle BDE with BD as the hypotenuse. Then to get the legs of that triangle to do pythag thrm, I used the little right triangle DCE I created with DC as hypotenuse. Since angle DCE is 75 degrees, DE= sin75 and CE= cos75 Then did Pythagorean Theorem to get hypotenuse of triangle BDE, but I didn’t square root it since we will square it for the radius squared anyway ((Sin75)^2 + ((sqrt2)+cos75)^2) * pi/4 = approx 2.93 Maybe not the easiest way, but it’s how my brain worked it out ;)
@PreMath3 жыл бұрын
Very well done. Great effort. Thank you Young! Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Correcto amigo.
@geraldillo3 жыл бұрын
I love these kind of puzzles , thanks for posting! I did it differently; Because triangle ACD is a right angle triangle, angle ACD = (180-90-30)º= 60º I drew a line from point D, downward and parallel to line AB I call the intersection with the horizontal radius point E angle ECD = 180º-(angle BCA +angle ACD)º= 180-(45+60)º= 75º Because line CD=1; line CE = cosine 75º line DE = sine 75º cosine 75º= (√6-√2)/4 sine 75º= (√6+√2)/4 the hight of triangle BDE= sine 75º the base of triangle BDE= (line BC+line CE)=(√2+cos 75º)= √2+(√6-√2)/4= (√6+3√2)/4 line BD= radius Now you can use the pythagorean theorem to solve for r; (line BC+line ce)^2+(line DE)^2=r^2 (√2+cos 75º)^2+(sin 75º)^2=r^2 ((√6+3√2)/4)^2+((√6+√2)/4)^2= r^2 Doing the math gives; r^2=2+√3 Area of the quarter circle= pi*r^2/4= pi(2+√3)/4
@PreMath3 жыл бұрын
Great job Geraldillo Thank you! Cheers! Keep rocking😀
@francois8422 Жыл бұрын
BD = radius sought (of the quarter circle) O= midpoint of AC = circumference center for A, B, C, D OA=OB=OD=OC=1 Angle< BOD=2*
@philipkudrna56433 жыл бұрын
Yes!! I did it exactly the same way. Since I didn’t know the properties of the 30-60-90 Triangles by heart, I had to use the law of sines to arrive at CD=1. AB=BC=sqrt(2) was easy and the I even remembered by heart the law of cosines formula and did the correct calculation! I am really proud of myself, because that was not an easy one and required rather advanced (in my view) knowledge of trigonometry. An interesting problem. Keep them coming!
@PreMath3 жыл бұрын
Super Philip Thank you! Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Muy bien.
@eleall52953 жыл бұрын
Here is more desirable solution On step3, I found 180° - 75° = 105° I used some trigonometric theorem that if theta is acute angle, cos(180° - theta) = - cos(theta) And I drew two expressions On triangle ABD, use law of cosines r² = 5 - 2*sqrt(6)*cos75° On triangle BCD, use law of cosines r² = 3 - 2*sqrt(2)*cos105° = 3 + 2*sqrt(2)*cos75° We can solve the problem by multiplying sqrt(3) and both sides of 2nd equation, add each side of 1st and 2nd equation Therefore cos75° is gone Only r² remains (sqrt(3)+1)*r² = 5+3*sqrt(3) The reason why this solution is more desirable is this solution have a great flexibility to problem with non-common angles Even if problem is presented with non-common angles, which have trouble of using Angle Sum Identities, my solution is already generalized to non-common angles Thanks for reading
@marioalb9726 Жыл бұрын
Searching the inscribed square, its side is: s = 2 cos 30° + 2 sin 30° s = √3 + 1 = 2,732 cm Diameter of circle is equal to diagonal of inscribed square d²= 2s² d = 3,8637 cm Area = ¼ . ¼πd² Area = 2,931 cm² Much easier than this complicated video !!
@AnonimityAssured3 жыл бұрын
I made it 2.931 by applying the cosine rule to the upper triangle rather than the lower one. An alternative method was to reproduce the right triangle four times, to get a square with side-lengths √3 + 1, using the handy 30° triangle. That made r² = ((√3+1)√2/2)² = √3 + 2, so that the area of the quarter circle = (√3 + 2)π/4 ≈ 2.931.
@PreMath3 жыл бұрын
Super job Julian Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@josemath68282 жыл бұрын
Correcto .
@kennethstevenson9762 жыл бұрын
I got the same answer, the same way.
@dougustine2 жыл бұрын
I really like how you started with a strategy, I am almost 50 and I love these videos.
@dougustine2 жыл бұрын
I thought you would avoid using the cosine law. If you are to jump into sin cosine etc, it would have been faster to look at sin(45)*H to get BC which is Root2/2*2 or root2, Cos to get AD. It seems simpler in my mind to stick to one system. But again I LOVE your channel and watch almost everyone that pops up. Sometimes I go back and try to solve the same equation using different methods. Keep up the problems
@Ivan-Matematyk3 жыл бұрын
From Ptolemy's theorem follows 2*r=sqrt(3)*sqrt(2)+1*sqrt(2). Thus r^2=(sqrt(3)+1)^2/2.
@PreMath3 жыл бұрын
Great! Thank you! Cheers! Keep rocking😀
@drpkmath123453 жыл бұрын
Very nice problem my friend! Very thorough step-by-step tutorial for sure. Keep up the good work my friend!
@PreMath3 жыл бұрын
So nice of you my friend Thank you! Cheers! Keep rocking😀
@sameerqureshi-kh7cc3 жыл бұрын
New formula of math.....soft spoken person + mathemagician = teacher of premath 😊👍🌹
@PreMath3 жыл бұрын
Wow, thank you Sameer So nice of you dear Keep rocking😀
@robertberg1609 Жыл бұрын
Nice problem and solution as always. Turns out that cos(105) equals -sin(15) which can be derived by using sin(45-30). Long story short. You get cos(105) = ((sqrt(2) - sqrt(6))/4. Put that in the expression for r
@MAREKROESEL2 жыл бұрын
Elegant version: Let S be a centre of AC. BS = 1, SD = 1, => BSD is isosceles,
@davidp44273 жыл бұрын
Interesting, you can rotate the diagram through the other three quadrants which results in an inscribed square with side equal to the two sides of the original triangle (1 + square root of 3). The diagonal of the inscribed square is the diameter of the circle. Calculating the diameter and area, you get the area of the quadrant as 0.93 * pi.
@3057luis3 жыл бұрын
You can also use AD and DC straight lines to get two equations in the form y=ax+b. Solving this system equation will give the x,y coordinates of point D, and than r^2=x^2+y^2.
@tiborkote2 жыл бұрын
Was using the same first 3 steps, but then drawed a vertical line from D point downward to BC extension, calling it E point at the end. Created a small right triangle (CDE) where can can calculate the horizontal (CE) and vertical (ED) sides with Cos (75) and sin (75). This way skipped to use of Law of Cosines, maybe using up part of its definition. Then radius can calculate from BED right triangle as we know the BE and ED sides.
@marioalb9726 Жыл бұрын
Searching right triangle with hypotenuse BD = r One cathetus is a = 2 sin 30°. sin 75° a = 0.9659 cm Similarity of triangles: 2 / 1 = r / 0,9659 r = 1,9318 cm Area = ¼πr² Area = 2,931 cm² ( Solved √ ) Much easier than this complicated video
@EnnioPiovesan Жыл бұрын
A,B,C,D are four points in a circle with center in the midpoint of AC (triangles ABC and ADC are both rectangles). By Ptolemy's theorem AC*BD=AD*BC+AB*DC so: 2r=√3√2 + √2 --> r=(√2/2)(1+√3). Area=(1/4)π (1/2)(1+√3)² = (1/8)π(4+2√3)=(π/4)(2+√3)
@illyriumus29383 жыл бұрын
Once i learned the cos formula from you, now I solve everything with cos 😂. I am really getting good at this thanks to you!!
@PreMath3 жыл бұрын
So nice of you dear. You are awesome. Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@josemath68282 жыл бұрын
Correcto.
@michaelkouzmin2813 жыл бұрын
I solved it using analitical geometry assuming B=[0;0] and finding equations for lines containing [AD] and [DC], thus coordinates of D [(sqrt(6)+3sqrt(2))/4; (sqrt(2)+sqrt(6))/4]. Then r^2=x^2+y^2; r^2=sqrt(3)+2; Asec= pi(sqrt(3)+2)/4= 2.9311 sq.units
@PreMath3 жыл бұрын
Very well done. Thank you Michael! Cheers! Keep rocking😀
@LogicQuest3 жыл бұрын
Love your work..keep posting these questions..
@PreMath3 жыл бұрын
So nice of you dear Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@ExpressStaveNotation3 жыл бұрын
I realised that all the points ABCD themselves lie on a circle centered at mid AC (because of the right angles at B and D). This circle is radius 1. Call the center O. OCD is equilateral so angle COD is 60. Angle BOC is 90. So BOD is 150. Then I used the cos rule on triangle BOD. r^2 = 1^2 + 1^2 - 2 (1)(1)cos150. = 2 - 2(-r3/2). = 2+r3. So Area = (2+r3)pi/4.
@alainpeugny11462 жыл бұрын
Yes! And this triangle BOD is isosceles as BO = OD = 1. As said, BOD angle equals 150° and so the two side angles, OBD and ODB, are both equal to 15°. The radius can be easily calculated : r = OB.cos15 + OD.cos15 = 2.cos15 = 1.9318516. r^2 = 3.73205 (and not 3.724 as estimated on the video… 😎)
@luigipirandello59193 жыл бұрын
Amazing solution. Thank you Sir. You are a inspired teacher. Everything you explain become easy to understand. I feel myself motivated.
@PreMath3 жыл бұрын
So nice of you Luis dear. You are awesome. Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@josemath68282 жыл бұрын
Muy bien.
@emmanuelcollet2243 жыл бұрын
I used a copy and rotation by 90 degres of the 2 triangles. I have a cord with a length = 1 + sqrt(3). I define x as the rayon minus the length of the isoceles triangle, x = r - sqrt(2) use the cord theorem with the diameter and the cord 1 * sqrt(3) = x * RestOfDiameter 1 * sqrt(3) = (r - sqrt(2)) * (r + sqrt(2)) so r^2 = 2 + sqrt(3) and so area of the quarter circle = pi / 4 * r^2
@montynorth30093 жыл бұрын
Also works using triangle ABD. Same use of cosine formula. Sides, the square roots of 2 & 3 and the included angle of 75 degrees.
@PreMath3 жыл бұрын
Excellent Monty Thank you! Cheers! Keep rocking😀
@johnryder17133 жыл бұрын
Nothing like a good Triangle problem, Thanks a lot
@PreMath3 жыл бұрын
Most welcome! Thank you John! Cheers! Keep rocking😀
@pranavamali053 жыл бұрын
Wow nice question, the quality of questions u bring makes me view and like ur vedio everyday
@PreMath3 жыл бұрын
Glad to hear that So nice of you Pranav Thank you! Cheers! Keep rocking😀
@Deluthan772 жыл бұрын
Another trig-free method: (1) As before, triangle ACD is 30-60-90, from which we get that angle ACD=60 degrees and CD has length 1. (2) Now, add a point P on line AC such that BP is the perpendicular bisector of AC. Also draw in the line DP. (3) It is easy to show that BPC is a 45-45-90 triangle while DPC is an equilateral triangle and all segments connected to P are length 1. (4) Hence, BPD is a 150-15-15 isosceles triangle. (5) Hence, angle DBC is 30 degrees and CDB is 45 degrees. (6) Finally, calculate the radius BD by partitioning the triangle BCD into 30-60-90 and 45-45-90 sub-triangles. This leads to a radius squared of r^2=2+sqrt(3)
@predator17023 жыл бұрын
Amazing solution 👍😊, thank you teacher 🙏.
@PreMath3 жыл бұрын
You're welcome 😊 You are the best Thank you! Cheers! Keep rocking😀
@gaopengjiang42942 жыл бұрын
Connet BD and set two lines from D to be perpendicular with BA and BC at points E and F, respectively. Then, the triangle ADE and triangle DCF are similar triangles. Based on the ratio rules between sides and the Pythagorean theorem, it could be found that BD (the radius of the circle) is twice the length of DF. And DF could also be solved by the ratio rules between the sides of triangle ADE and triangle DCF. It is found to be (sqrt(6)+sqrt(2))/4. Thus, the radius is (sqrt(6)+sqrt(2))/2, and the area of the quarter circle is pi*(2+sqrt(3))/4.
Very interesting. But I don't like to use scientific calculater (be cause in Ukrainian schools we never used calcilators). And here we uses it for cos(105). So I tried not to use it and found a method. The Middle of AC - let it will be G. It is the center of circle around right triangle ACD. So AG=CG=GD=1. Let's calculate the BG. BG. It is Mediane of our triangle ABC and a bissectrise of this triangle and the hight of this triangle. So ffrom right triangle AGB we may calculate that BG=1. So, we see that it is a part of our circle around triangle ACD and BG, BD are rediuses of this circle. And so angle BGD is 2 angles BAD = 2*(45+30)=2*75=150 degrees. And cos(150)=-cos(30). So we use the theorem of cosines in triangle BGD: BD^2=1+1-2*1*1(-sqrt(3)/2)=2+sqrt(3). And then can calculate the Area=pi*(2+sqrt(3))/4. And than if use pi=3.14 and sqrt(3)=1.732 we may calculate and receive the same answer.
@banazamalsadiwala75163 жыл бұрын
Thank you so much for this video.
@PreMath3 жыл бұрын
You are so welcome! Good to hear from you Banaz So nice of you dear Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Correcto.
@mcorruptofficial65793 жыл бұрын
Hello friend, thanks for the example. It would be better, i guess, if you made reasoning this problem in backward way. That is, first how to find the quarter-circle area? Ok, we have to get the radius. Second, to find the radius r equals BD we have to consider the line BD as a leg of the triangle BCD. Third, we should account all the legs and angles inside of the triangle BCD And so on... - i think your got this idea - backward way 👍 So we do in electronic-circuit inventing/engineering. Kind Regards ✊
@michaelstahl15152 жыл бұрын
I choosed the same way but I choosed triangle ABD for solution. The ressult was as well. I`m happy to see asolution with cosinus theorem .
@geoffreyparfitt70033 жыл бұрын
If you complete the problem using trig values as surds, 3.724 is replaced by (2 + root 3).
@PreMath3 жыл бұрын
Yes, we could take that route as well. Thank you Geoffrey! Cheers! Keep rocking😀
@crispinmcsticks3 жыл бұрын
Nice video! Couldn’t you get BC and AB via the Pythagorean Theorem? If it is given that BC = AB, and let AB = BC = x, you get X^2 + X^2 = 2^2 2X^2=4 X^2=(4/2) X^2=2 X=sqrt(2) Or is this a false assumption?
@PreMath3 жыл бұрын
You are right, we can use Pythagorean theorem as well. 45-45-90 theorem is same as Pythagorean theorem. Thank you Crispin! Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Buen planteamiento.
@242math3 жыл бұрын
got it, thanks for the challenge bro
@PreMath3 жыл бұрын
So nice of you my friend Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@ClaudioBrogliato2 жыл бұрын
Got a similar result with a different process. Once I had the quadrilateral sides and angles I noticed that the opposite angles both sum to 180°. Hence the quadrilateral is a ciclic one and you can apply the nice formula m n = ( a times c) + (b times d) where m and n are the diagonals and a b c d the sides.
@vcvartak71113 жыл бұрын
You don't need a cosine rule. Sum of the product of two opposite sides of cyclic quadrilateral is product of the diagonals. Hence r*2=sqrt(3)*sqrt(2) + 1*sqrt(2)
@mightyconquers3 жыл бұрын
This really help me in class
@PreMath3 жыл бұрын
Great Mighty Thank you! Cheers! Keep rocking😀
@apollogamer59493 жыл бұрын
Thanks 😊... Btw How do you do??
@PreMath3 жыл бұрын
You are welcome Apollo! I'm doing fine😀 Thank you! Cheers! Keep rocking😀
@millipro14353 жыл бұрын
good 👍❤️♥️ now it's our turn to ask you x - x ^-1 = 1 finds the value of x knowing that the answer is in gold
@PreMath3 жыл бұрын
x - x ^-1 = 1 => x^2 - x-1=0 => Use quadratic formula, we get: x=(1+- sqrt5)/2 two solution! Cheers😀
@millipro14353 жыл бұрын
@@PreMath yeep and my reference was to show the golden ratio 😉❤️
@nirupamasingh29482 жыл бұрын
You go to the minutest detail vvvvnice way of solving
@washingtoncostasilva625 Жыл бұрын
I used the Ptolomeu theorem in the quadrilateral and found a better approximation of the radius.
@andrewkoziel74702 жыл бұрын
The was a bracket missing in the previous comment. The more precise solution is: Area = PI *(2+SQRT(3))/4 = 2.93114585... This could be obtained from the drawing by comparing similar triangles.
@williamangelogonzales1483 жыл бұрын
If E is midpoint of AC, you can use cosine law where in the side length are 1 and 1 and the angle in between is 150 deg
@moth363 жыл бұрын
Thank you very much for this nice video
@sumithpeiris8440 Жыл бұрын
In cyclic quadrilateral ABCD, use Ptolemy's Theorem 2 X r = V2 X (V3 + 1) r = V2 / 2 + V6 / 2 Sumith Peiris Moratuwa Sri Lanka
@bentels53403 жыл бұрын
Did it almost the same way. But I don't see why you are being inexact about it -- the answer is (3 + 2sqrt(2)sin(15))*pi/4 .
@PreMath3 жыл бұрын
Good job Ben Keep rocking😀
@WaiWai-qv4wv3 жыл бұрын
very thanks
@PreMath3 жыл бұрын
Most welcome Wai Wai So nice of you dear Thank you! Cheers! Keep rocking😀
@thed58183 жыл бұрын
Good solution. (waiting for harder questions)
@PreMath3 жыл бұрын
Thank you! Cheers! Keep watching😀 Greetings from the USA!
@thed58183 жыл бұрын
@@PreMath Thanks, greetings from Turkey! 🙂
@mahalakshmiganapathy64553 жыл бұрын
Thank you sir very good problem
@PreMath3 жыл бұрын
So nice of you Mahalakshmi Thank you dear! Cheers! Keep rocking😀 Greetings from the USA!
@servenserov3 жыл бұрын
1. Complete to full citcle; 2.Square (1+√3) × (1+√3); 3. Diagonal of a square = diameter of a circle = =√((1+√3)²+(1+√3)²); ................
@sedatguzel44803 жыл бұрын
cos 105 değerini bilmeyenler için : B ve D açılarının toplamı 180 olduğu için ABCD dörtgeni teğetler dörtgenidir. Aynı yayı gören çevre açılar birbirine eşittir. Buna göre , DBC açısı 30 ve BDC açısı 45 derecedir. C açısından BD kenarına dikme indirip 45-45-90 ve 30-60-90 üçgeninden de sonucu bulabilirler.
@Okkk5172 жыл бұрын
The radius square is equal to (√2+cos(75°))^2 + sin(75°)^2 =√3+2.
@williamwingo47402 жыл бұрын
If it were nit-picking time, someone might say that the numerical value of -0.256 for cos 105 degrees is still only approximate. A purist would use the sum-of-angles formula and say that 105 degrees = 60 degrees plus 45 degrees; then from the sum-of-two-angles formula cos 105 = cos 60 cos 45 - sin 60 sin 45; then from the 30-60 and 45-45 right triangle identities, omitting the surgical details, we have: cos 105 = (1/2) (1 / sqrt(2)) - (sqrt(3) / 2) (1 / sqrt(2)) = 1 / (2 sqrt(2)) - sqrt(3) / (2 sqrt(2)) = (1 - sqrt(3)) / (2 sqrt(2)) which is an exact solution; but approximately -0.2588 by my calculator; which gives the same figure for cos 105 directly. A Google search also confirms -0.2588 [1]. I'm not sure where your figure of -0.256 came from--but hey, both figures are approximate. This gives rise to some slight differences between us in the rest of the calculation. Normally, I would be reluctant to contradict and/or argue with the professor; but then I got a lot of practice at that thirty years ago when I was a graduate student in medical school. (OTOH, see confession below [2]). Anyway, getting back on topic and using this exact figure for cos 105, we have r squared = 2 + 1 - (2 sqrt(2) ((1 - sqrt(3)) / (2 sqrt(2)) = 2 + 1 - (1 - sqrt(3)) = 2 + 1 - 1 + sqrt(3) = 2 + sqrt(3); a surprisingly simple result. The calculator gives approximately 3.7321. Then the area of the quadrant is (pi r squared / 4) = (pi) (2 + sqrt(3)) / 4 and again the calculator gives approximately 2.9311. Thank you, ladies and gentlemen; I'll be here all week.😎 1. www.google.com/search?client=avast-a-1&q=cosine+105+degrees&oq=cosine+105+degrees&aqs=avast..69i64.7j0j7&ie=UTF-8 2. And if it were confession time, I might admit that I had a hard time with the calculator--until I realized it was set to radians.
@homerotreto93912 жыл бұрын
Not familiar with Celsius?🤔🤭
@rishabhjain7282 жыл бұрын
By using Ptolemy theorem 2r=√2(√3+1) r=(√3+1)/√2 Area=π(2+√3)/4 =2.9311sq.unit (approx)
@orkuntanverdi30052 жыл бұрын
How do we know the value of cos105 while we r on exam?
@andrewkoziel74702 жыл бұрын
The more precise solution is: Area = PI *(2+SQRT(3)/4 = 2.93114585... This could be obtained from the drawing by comparing similar triangles.
@subramaniankrishnaswami71963 жыл бұрын
cos(105) = -0.259 not -0.253. Hence the answer is 2.93 not 2.92
@rgrod68013 жыл бұрын
I'm surprised nobody caught the error written on the upper left side @2:13 stating AB = AC as a given. It is not! I know it's just a typo error that happens to anybody once in a while. Otherwise it's still a good presentation.
@yosepupithani54413 жыл бұрын
cosine ratio is heart of the problem
@PreMath3 жыл бұрын
Excellent Yosepu Thank you! Cheers! Keep rocking😀
@yosepupithani54413 жыл бұрын
@@PreMath thank you very much for video sir
@billcame69913 жыл бұрын
I solved it by figuring out that a square inside the full circle would have an edge of (1 + sqrt(3)) and figuring out that the radius would be an edge of an equilateral triangle from a 1/4 of that square with 45/45/90 degrees.
@jdd29183 жыл бұрын
Great vid
@PreMath3 жыл бұрын
So nice of you Jedd Thank you! Cheers! Keep rocking😀 Greetings from the USA!
@ΚΑΝΑΒΟΣΜΑΝΩΛΗΣ3 жыл бұрын
I didn't try...I hate calculations when the method is known...Thanks again
@Teamstudy45953 жыл бұрын
Ans : Pie(1 + _/3)/4
@judydinallo34903 жыл бұрын
great problem for homework
@PreMath3 жыл бұрын
So nice of you Judy Thank you! Cheers! Keep rocking😀
@josemath68282 жыл бұрын
Muy interesante.
@misterenter-iz7rz10 ай бұрын
No compound angle formula, an isosceles triangle insides, 1,1 between angle 150, r^2=2+sqrt(3), then the answer is pi/4(2+sqrt(3)).😊
@misterenter-iz7rz10 ай бұрын
premath is progressing in large step.🎉🎉🎉
@jussiano27613 жыл бұрын
Olá tudo bem! O raio r^2= 2 + 3 - 2Cos(30+45).(6^1/2)
@PreMath3 жыл бұрын
Obrigado pelo bom feedback. Você é demais. Cuide-se querido😀
@brianfogarty88383 жыл бұрын
Can anyone tell me why the instructor was able to rationlize a=2/Sq rt of 2 to a=square rt of 2. I appreciate it
@homerotreto93912 жыл бұрын
By multiplying for one (sqrt2/sqrt2)
@kazkaz10033 жыл бұрын
I used Ptolemy's theorem because I dont know the value of cos105°
@PreMath3 жыл бұрын
Great jpb Thank you! Cheers! Keep rocking😀
@sandanadurair58623 жыл бұрын
Thank you. Today I learnt Ptolemy theorm. I could see ABCD as cyclic quadrilateral.. AB=BC= √2 AD = √3 CD= 1 AC = 2 BD = r As per Ptolemy theorem AB.CD=BC.AD =AC.BD √2.1+√2.√3 = 2.r r = (1+√3)/√2 r^2 = 3.732 Area = 3.732*π/4 = 0.933π sq.units Good practice for me. Thank you once again
@Sergey-Primak3 жыл бұрын
AD+CD=sqrt(3)+1 R=[AD+CD]*cos 45 = [AD+CD]/sqrt(2) S = Pi*R^2/4 = Pi*[sqrt(3)+1]^2/8 = 2,93 unfortunately I cannot attach the image AD+CD - side of square inscribed in the circle
@josemath68282 жыл бұрын
Muy bien.
@susennath60353 жыл бұрын
Good
@PreMath3 жыл бұрын
Thank you Susen! Cheers! Keep rocking😀
@richardli6812 жыл бұрын
Cos 105 isn’t exactly accurate, I found a way that includes root 3 as the answer(roughly 1.732), which is more accurate than cos. It didn’t involve trig such as cos
@dianeweiss45623 жыл бұрын
Much better if we could find an expression for cos(105).
@barryday91073 жыл бұрын
cos(105) = cos(45+60) = cos(45).cos(60) - sin(45).sin(60) = sqrt(2)/4-sqrt(6)/4. Done. I think there was some misrounding in the calculation.
@dianeweiss45623 жыл бұрын
Use 1/2 angle formula for double angle of 210.
@skakdosmer2 жыл бұрын
The “right angle” in the drawing is obviously less than 90˚. This makes me a little suspicious: Is it even possible to make the drawing correctly?
@devkundan5393 жыл бұрын
Why b=1?
@vidyadharjoshi57142 жыл бұрын
Step 2 - AB = BC ( AB is not equal to AC but AB = sqrt2 )
@__RamadhanSetyo3 жыл бұрын
Better show how to find w.out calculator. I mean, Show how to get the value of cos105°
@alexniklas87773 жыл бұрын
Решил аналогично
@mahinnazu5455 Жыл бұрын
Sir can I give your some maths my Facebook page???
@PreMath Жыл бұрын
Please send email to: premathchannel@gmail.com Cheers
@kimphatnguyen94013 жыл бұрын
Easy
@PreMath3 жыл бұрын
Awesome Kim! Cheers! Keep rocking😀
@owolabiquadri54053 жыл бұрын
Good day premaths. I need clarification on this: if the figure is a quarter circle is the radius not longer than AB and BC as indicated in the diagram. I will like to know why we used AB as the radius. Thank you.
@luborjakubec9212 Жыл бұрын
2.93
@Teamstudy45953 жыл бұрын
Sorry Sir I Solved it differently!
@PreMath3 жыл бұрын
No worries! Keep rocking😀
@simonedaems11412 жыл бұрын
COS 105° = (- 0,259).
@olivier91253 жыл бұрын
on calculator cos de 105°= -0.2588190451 and not -0.256 so who is right ?
@PreMath3 жыл бұрын
Dear Oliver, we are taking approximate values to avoid big string. Keep rocking😀
@olivier91253 жыл бұрын
@@PreMath approximate value would rather -0.259 and not -0.256
@msafasharhan2 жыл бұрын
Please remove the black writing you do it in this video and the previouse video thank you
@misterenter-iz7rz10 ай бұрын
Attempt your old puzzle.😂, I guess you would refuse to adopt compoind angle formulas, even cosine rule? sqrt(2)×sqrt(2), a right- angled triangle, 2, 1, sqrt(3), a right- angled triangle, angle between 45+60=105, cos 105=cos 45 cos 60-sin 45 sin 60=sqrt(2)/2 1/2-sqrt(2)/2 sqrt(3)/2=1/4 sqrt(2)(1-sqrt(3)), r^2=2+1+(sqrt(3)-1)=2+sqrt(3)=1/2(4+2sqrt(3))=1/2(1+sqrt(3))^2, r=1/sqrt(2) (1+sqrt(3)), 1/2(sqrt(2)+sqrt(6)), therefore the area is 1/4 pi 1/4(8+2sqrt(12))=pi/4 1/2(4+2sqrt(3))=pi/4(2+sqrt(3)).😊
@mustafizrahman28223 жыл бұрын
Failed to solve it😥
@PreMath3 жыл бұрын
No worries! You gave your honest shot. Keep rocking😀 Greetings from the USA!
@sandanadurair58623 жыл бұрын
Dont worry Rahman. I was looking for your solution!!!!!! I appreciate your humbleness at this age.
@sandanadurair58623 жыл бұрын
Hi Rahman I am 4.5 times elder to you. I used to watch your quick responses!!!!!!!!
@mustafizrahman28223 жыл бұрын
@@sandanadurair5862 Wow! Thanks.
@christopherbalme1232 жыл бұрын
tu aurais pu être plus précis r² = (√2)² + (1)² - 2√2 x 1 x cos (105°) r² = 3 - 2√2 x cos (105°) calculons cos (105°) précisément cos (105°) = cos (45°) x cos (60°) - sin (45°) x sin (60°) cos (105°) = ((√2)/2 )x 1/2 - ((√2)/2) x ((√3)/2 ) cos (105°) = √2/4 - √6/4 remplaçons cos (105°) r² = 3 - 2√2 (√2/4 - √6/4) r² = 3 - (2 x √2 x √2 )/4 + (2 x √2 x √2 x √3)/4 r² = 3 - (2 x 2)/4 + (2 x 2 x √3)/4 r² = 3 - 1 + √3 r² = 2 + √3 calculons l'aire aire = 1/4 x π x r² aire = 1/4 x π( √3 + 2 ) aire = 1/4 x ((√3)π + 2π ) aire = ((√3)π + 2π )/4 ≈ 2,93114585 ≈ 2,93 et pas 2,92
@заводмихельсона3 жыл бұрын
8 минут посвятить говнозадаче в два действия.Либо одним дополнительным микропостроениемДа еще и не получить точный ответ.Это что,африканские студенты на жизнь зарабатывают?
@АнтонГробовщиков2 жыл бұрын
задачка решается проще без тригонометрии)) r^2 = 2 + V3