Excellent! Glad to hear that! Thank you for your feedback! Cheers! You are awesome VJ. Keep it up 😀
@yayat8801 Жыл бұрын
ولا
@williamwingo4740 Жыл бұрын
As others have already noted, this one is unusual for using three different integer Pythagorean triangles. I recognized BCN as 7-24-25--probably because I've done so many of these by now--so I was able to skip the first step; but then ABC and AMN both turn out to be 3-4-5's, scaled up by 8 and 3 respectively. Didn't realize that until I'd done the calculations. Sneaky! Cheers. 🤠
@fevengr92452 жыл бұрын
The interesting thing about this problem to me is that in spite of the lines and angles going every which way, you still managed to select values that produced an integer result. Thanks!
@williamwingo89522 жыл бұрын
They're all "magic" Pythagorean triangles. Specifically, AMN and MNB are 3-4-5 (multiplied by 5); the big triangle ABC is 3-4-5 multiplied by 8; and BNC is 24-25-7.
@marioperic97092 жыл бұрын
Very nice task. Thank you professor for the good brain gym for the end of the week. well, it is easy: NB is the same as AN = sqrt(NC^2+BC^2)=25. which means AC is 32. the triangles AMN and ABS are similar. so: MN/AM=24/32 and MN/25=24/(2*MN). Multiplying these equivalence MN^2=225 so MN=15!
@attilajanos21792 жыл бұрын
That's what I did too! 🙂
@Q_from_Star_Trek2 жыл бұрын
An interesting approach: A,C,B on the circle with the center on M. So AM=MB=MC=R. BMNC quadrilateral and
@johnspathonis10782 жыл бұрын
Another great video. Students are required to commit some things to memory such as ratios --- 3:4:5, 7:24:25 , Sqrt of 2, Sqrt of 3 etc. This problem employed triangles with side ratios of 3:4:5 and 7:24:25. Students will not learn the application of these ratios if you don't apply them in your problem solving. Cheers
@silviatotaro93722 жыл бұрын
Well done.I solved the problem exactly in the same way. I used the pythagorean triples to get the results. Hi from Italy!
@PreMath2 жыл бұрын
Fantastic! Thank you for your feedback! Cheers! You are awesome Silvia. Keep it up 😀 Love and prayers from the USA!
@Tmwyl2 жыл бұрын
Me too. I like doing these puzzles before I start work to give my brain a jump start!
@eichkay8169 Жыл бұрын
AMN and ABC are similar triangles, and AB=2AM. From those we have the equations MN/AN=12/AM and AM/AN=(7+AN)/2AM. Apply Pythagorean theorem to ABC and we get the equation (7+AN)^2+24^2=(2AM)^2. We now have three unknowns and 3 equations. We can then use algebraic methods to solve for MN.
@sandanadurair58622 жыл бұрын
Another approach! Having established BN=AN=25 Extend AC to a point D such that AN=DN=25. Let MN = h Then BN = 2h since MN is parallel to MN and M and N are mid points of AB and AD. In the extended triangle BCD CD = 25-7=18 BC = 24 So BD^2 = BC^2+CD^2 4h^2 = 24^2+18^2 h = 15
@gybx40942 жыл бұрын
Very nice! A great exercise for the mind. I haven't done this in many decades since high school!
@johnnath41372 жыл бұрын
Circumcircle ABC is also a semi-circle, so MA = MB = MC = r (say); ΔAMN ≡ ΔBMN → AN = BN = 25 → AC = 32 → 2r = AB = 40 → r = 20 ; Δs AMN, ABC are similar → MN/AM = BC/AC = 24/32 → MN = r x 24/32 = 20 x 24/32 = 15.
@seeithappen1 Жыл бұрын
Very good - brings back memories of my school time .....
@mcdowelltw2 жыл бұрын
You're a wonderful teacher.
@jaybling66872 жыл бұрын
Without watching the video in full, first connect points N and B, which forms a right triangle NCB. Segment NB is the hypotenuse of NCB which has a length of 25 based on the 7-24-25 Pythagorean triple. Then we compare right triangles NMB and NMA and see they are similar since they share a height NM and segments MB and MA are the same length, therefore segments NB and NA are the same length as well so NA is also 25. That means segment AC is 32 (NC + NA = 7 + 25). Then we find the hypotenuse AC of right triangle ACB to be 40 based on the 3-4-5 Pythagorean triple multiplied by 8. Then MA = MB = AC/2 = 20. Finally with either right triangle NMA or NMB, we can find NM using the 3-4-5 Pythagorean triple multiplied by 5 to get a length of *15*.
@PreMath2 жыл бұрын
Very well dome Jay Thank you for sharing! Cheers! You are awesome. Keep it up 😀
@matheuslopes52872 жыл бұрын
Solved a similar problem once, but with the triangle inscribed in a semicircle. In a few seconds, knew MN=15
@devondevon43662 жыл бұрын
AN = BN=25 BN=25 (using pythag.) hence AC=32 hence AB=40 AM=20 and since AN=25, then MN=15 since triangle AMN is a scaled up 3, 4, 5 right triangle. (scaled up by 5) Answer MN=15
@nirupamasingh29482 жыл бұрын
Your way of explanation marvellous. Thank youSir
@PreMath2 жыл бұрын
You are most welcome Niru dear Thank you for your feedback! Cheers! You are awesome. Keep it up 😀 Love and prayers from the USA!
@KundanKumar-pq5ec2 жыл бұрын
It was too easy problem and I solved it easily and quickly....
@KundanKumar-pq5ec2 жыл бұрын
@MathsJokar this is a good channel for maths lover
@MrPaulc222 Жыл бұрын
Great video, but I went a totally different route (don't I always? :) ). Pythagoras gives 25 as the hypotenuse of BNC --> so MN becomes cos(MN/25) hence 25cos(53.13) = 15. My calculator shows it as a smidgeon more than that but that's due to rounding errors on trigonometry values. However, your way looks cleaner.
@parikshitparekh96092 жыл бұрын
Easy :) Learnt previously only...
@PreMath2 жыл бұрын
Super Parekh You are awesome. Keep it up 😀
@williamwingo89522 жыл бұрын
No peeking and no calculators, just multiple invocations of Pythagoras: Draw line NB. Length of NB is √(24^2 + 7^2) =√(576 + 49) = √625 = 25. Triangles ANM and NMB are congruent by side-angle-side, so AN = NB = 25. Now considering the entire triangle ABC: AC = 25 + 7 = 32; and the hypotenuse AB = √(32^2 + 24^2) = √(1024 + 576) = √1600 = √[(16)(100)] = (√16)(√100) = (4)(10) = 40; so AM = MB = 20. Then MN = √(25^2 − 20^2) = √(625 − 400) = √225 = √[(25)(9)] = (√25)(√9) = (5)(3) = 15. Thank you, ladies and gentlemen; I'm here all week. 🤠
@SpikeTheNeuropsych2 жыл бұрын
Triangle Man would be proud, for you used nothing but triangles.
@d.m.70962 жыл бұрын
Another solution - Let AN = y, AM = x = MB ∆ANM ~ ∆ABC (by A-A-A theorem of similarity) Therefore, AN/AB = NM/BC = AM/AC Hence, y/2x = NM/24 = x/y+7 Hence, y^2 + 7y = 2x^2 ... (1) By Pythagoras Theorem for ∆ABC, (y+7)^2 + 576 = 4x^2 Hence, y^2 + 14y + 625 = 4x^2 ...... (2) By (1) and (2), y^2 +14y + 625 = 2y^2 + 14y Hence, y = 25 = AN Therefore, AB = 40 and AM = 20 By Pythagoras Theorem for ∆ANM, MN = 15
@illyriumus29382 жыл бұрын
Solved it the same way with the difference that ABC triangle is a 3-4-5 triangle and i found the AC to be 40 easily.
@Taigan_HSE Жыл бұрын
Alternatively, without constructing (NB) you can see that (AM)/(AN)=[(AN)+7]/2((AM). So 2(AM)^2=7(AN)+(AN)^2. Then, 4(AM)^2=[(AN)+7]^2+24^2. Two equations and two unknowns solve for (AM)= 20 and (AN)=25. Pythagorean gives us (MN)= 30
@davidseed29392 жыл бұрын
Side note. M is the centre of a circle radius 20, henceMC=20
@dhrubajyotidaityari92402 жыл бұрын
Complete the triangle ABD where B=90° .MN=½BD, BC²=AC.CD Let a=AN 24²=(a+7)(a-7), a=25 Now since AN=ND, CD=a-7=18 BD²=24²+18²=900=30² MN=15
@nobody_knows6752 жыл бұрын
Very challenging problem. Took me like 15-20 min to find a solution
@PreMath2 жыл бұрын
Great job Thank you for sharing! Cheers! You are awesome. Keep it up 😀 Love and prayers from the USA!
@theoyanto Жыл бұрын
Nice simple one for people like me, thanks again :-)
@anatoliy33232 жыл бұрын
Nice a task! I had solved it in the same way. Thank you so much, Sir. Lots of greetings from Ukraine>))
@PreMath2 жыл бұрын
Excellent! Glad to hear that! Thank you for your feedback! Cheers! You are awesome Anatol dear. Keep it up 😀 Love and prayers from the USA!
@rameshk6312 жыл бұрын
Be safe my friend.
@242math2 жыл бұрын
got it, thanks for the challenge bro
@gannonfitzgerald64852 жыл бұрын
This one was very easy to figure out by oneself, good job though 👍
@philipkudrna56432 жыл бұрын
Before watching: The missing part of the other side of the right triangle is 25. (You can mirror it along the line MN to the other side and it forms the right triangle 7-24-25.) This leaves the „large“ right triangle with the dimensions 24^2+(7+25)^2=40^2. Half of the large Hypothenuse is therefore 20. By Pythagoras for the left triangle you get 25^2-20^2=15^2. So MN = 15.
@thegeopoliticalanalyst16602 жыл бұрын
Can you please share a diagram. A pic may be. Did not get this.
@philipkudrna56432 жыл бұрын
@@thegeopoliticalanalyst1660 just Watch the video. Our professor explains it. Just what I did, but step by step!
@selvamd88612 жыл бұрын
Marvellous... I liked it
@erikguzik82042 жыл бұрын
As always, another great video. Just wondering for Triangle AMN --- Could you just use the 3-4-5 Right triangle to get MN? (im sure someone has already mentioned this)
@devondevon43662 жыл бұрын
Since triangle ABC is also 3-4-5 (scaled up by 8), then MB = 20 (since it is the mid-point of line AB), hence triangle MBN is a 3-4-5 (scaled up by 5 since BN = 25, and MB=20 ), hence MN = 15. So the answer to your question is yes
@Ninja_Legends2 жыл бұрын
I just want you too know I already found MN even before I saw this video
@govindashit65242 жыл бұрын
I solve it easily . Thanks.
@JLvatron2 жыл бұрын
Hey, I solved it! Thank you!
@PreMath2 жыл бұрын
You are very welcome. Thank you for your feedback! Cheers! You are awesome JL. Keep it up 😀 Love and prayers from the USA!
@susennath60352 жыл бұрын
Good explanation
@PreMath2 жыл бұрын
Keep watching Thank you for your feedback! Cheers! You are awesome Susen. Keep it up 😀 Love and prayers from the USA!
@thunderutkarsh99772 жыл бұрын
Thank you sir 🙏🙏
@extremegrief15252 жыл бұрын
What about drawing a parallel to MN from C and using similar triangles? Would that work?
@Reddogovereasy Жыл бұрын
Why is a square positive when a square root of a number is positive or negative? Example 3 squared is 9 but the square root of 9 can be either positive or negative 3.
@tijanimaths60062 жыл бұрын
Goooood👌👌👌
@vidyadharjoshi57142 жыл бұрын
BN = Sqrt( 24sq + 7sq ) = 25. AM = MB So AN = BN. So AC = 7 + 25 = 32. So AB = Sqrt ( 32sq + 24sq ) = 40. So AM = 20. MN = Sqrt ( ANsq - AMsq ) = Sqrt ( 625 - 400 ) = 15
@mustafizrahman28222 жыл бұрын
15 units. Good question.
@una_unknown2 жыл бұрын
wow I solved it from the thumbnail!
@PreMath2 жыл бұрын
Excellent! Thank you for your feedback! Cheers! You are awesome Achraf. Keep it up 😀
@walterbarboza1594 Жыл бұрын
Here NB=AN= 25 TRIANLE AMN AM =MN LET AM = x Then x squared+x squared = 25 squared. Solve fir x x= 25/root 2 = MN
@mahalakshmiganapathy64552 жыл бұрын
Super thank you
@PreMath2 жыл бұрын
You are very welcome Mahalakshmi dear. Thank you for your feedback! Cheers! You are awesome. Keep it up 😀 Love and prayers from the USA!
@mehmetdogancakr28782 жыл бұрын
Thanks.
@shashwatvats77862 жыл бұрын
Solved easily
@PreMath2 жыл бұрын
Great Vats Thank you for your feedback! Cheers! You are awesome. Keep it up 😀
@pranavamali052 жыл бұрын
Thnku
@PreMath2 жыл бұрын
You are very welcome. You are awesome Pranav. Keep it up 😀 Love and prayers from the USA!
@MusicHavenSG Жыл бұрын
This one is really forcing you to fully use the Pythagoras' Theorem. That's why I love Trigo so much.
@ДядяВолк-к9э2 жыл бұрын
3:4:5 special triangles in this figure
@PreMath2 жыл бұрын
Right on! Thank you for your feedback! Cheers! You are awesome. Keep it up 😀
@geoffroi-le-Hook2 жыл бұрын
and 7-24-25
@Teamstudy45952 жыл бұрын
MN = 15 units
@kumudsaraswat13982 жыл бұрын
I solve this problem when is see this Because I recently solved such kind of problem BTW I am from India
@PreMath2 жыл бұрын
Excellent Kumud! Thank you for your feedback! Cheers! You are awesome. Keep it up 😀 Love and prayers from the USA!
@kumudsaraswat13982 жыл бұрын
@@PreMath thanks sir
@JSSTyger2 жыл бұрын
OK I tried it all in my head and got 15.
@EPaozi2 жыл бұрын
J'aime quand on reste dans les nombres naturels !!!
@PreMath2 жыл бұрын
YES! Beaucoup plus simple à gérer ! Continue comme ça Paozi 😀
@doremi.harizuki3732 жыл бұрын
Thaks
@PreMath2 жыл бұрын
You are very welcome. Cheers! You are awesome. Keep it up 😀
@doremi.harizuki3732 жыл бұрын
Please wish me a good luck I have a math exam soon😢🤜🤛
@PreMath2 жыл бұрын
@@doremi.harizuki373 All the best Doremi dear. You are awesome 😀 Love and prayers from the USA!
@vishwambharmahant94852 жыл бұрын
MN =15
@olivierhabineza77552 жыл бұрын
The distance MN is of 15 units.
@devondevon43662 жыл бұрын
appears to =15 answer
@فراسمعابره-ج5خ2 жыл бұрын
Mn=16.89
@manualrepair2 жыл бұрын
👍
@PreMath2 жыл бұрын
Thank you for your feedback! Cheers! You are awesome. Keep it up 😀
@mathswan16072 жыл бұрын
15
@PreMath2 жыл бұрын
Great! You are very welcome. Thank you for your feedback! Cheers! You are awesome. Keep it up 😀
@jhandle4196 Жыл бұрын
"Now drop and give me 20."
@ВарвараДорофеева-з8у2 жыл бұрын
👍👍🤗
@holyshit922 Жыл бұрын
Pythagorean identity is enough to solve it
@adgf1x Жыл бұрын
mn=12
@imnitinnagar2 жыл бұрын
मजा आ गया गुरु तुम्हारे सवाल करके 🌹
@manualrepair2 жыл бұрын
i hope that my feedback help you
@manualrepair2 жыл бұрын
I said I didn't know your language well, but I know the language of mathematics and geometry
@PreMath2 жыл бұрын
Excellent! Glad to hear that! Thank you for your feedback! Cheers! You are the best. Keep it up dear 😀 Love and prayers from the USA!
@michaelkoch68632 жыл бұрын
My answer : " Find the real mathematics " .....
@rifatshan53622 жыл бұрын
🙂
@PreMath2 жыл бұрын
Thank you for your feedback! Cheers! You are awesome Rifat. Keep it up 😀 Love and prayers from the USA!
@luiginodilenardo68202 жыл бұрын
Guarda mio video Geometria numerica Area cerchio
@richarddumont5389 Жыл бұрын
The drawing is deceptive
@adilegarib40982 жыл бұрын
like!
@johnspathonis10782 жыл бұрын
Another great video. Students are required to commit some things to memory such as ratios --- 3:4:5, 7:24:25 , Sqrt of 2, Sqrt of 3 etc. This problem employed triangles with side ratios of 3:4:5 and 7:24:25. Students will not learn the application of these ratios if you don't apply them in your problem solving. Cheers
@AmirgabYT21854 ай бұрын
MN=15
@jaibhuwan61892 жыл бұрын
Easy :) Learnt previously only...
@PreMath2 жыл бұрын
Good job Jai
@mounirobeid65662 жыл бұрын
15
@PreMath2 жыл бұрын
Great! You are very welcome. Thank you for your feedback! Cheers! You are awesome Mounir. Keep it up 😀