For polar coordinate: x sin(xy) / (x² + y²) = r cosθ sin(r²sinθcosθ) / r² = r sinθ cos²θ sin(r²sinθcosθ) / (r²sinθcosθ) As r approaches 0, r²sinθcosθ approaches 0 (as |sinθcosθ| ≤ 1 < +∞) Therefore, sin(r²sinθcosθ)/(r²sinθcosθ) approaches 1 Note that |sinθcos²θ| ≤ 1 < +∞ Hence, the limit xsin(xy)/(x² + y²) = (0)(sinθcos²θ)(1) = 0
@bprpcalculusbasics4 ай бұрын
Excellent!
@EmmanuelGiouvanopoulos4 ай бұрын
he got an excellent from the professor himself! I constructively envy you, my friend!
@brycenbg93724 ай бұрын
wait, where is the whiteboard? 😂
@vr_91714 ай бұрын
Step 3 is possible but inaccurately justified. Just consider the fact that x² = |x|² and you are good to go.
@monzurrahman83074 ай бұрын
But then you would end up with |sin(xy)|/|x| rather |x||sin(xy)|. You can still proceed by multiplying by |y|/|y|, but step 3 is actually wrong
@vr_91714 ай бұрын
@@monzurrahman8307 Yeah I meant possible but by another way and a different result. After this step you may multiply up and down by xy and use sin(xy)/xy → 1 to conclude
@bitoty93574 ай бұрын
new white board?
@cyrusyeung80964 ай бұрын
Bprp said he was in Taiwan, and he bought a new whiteboard from 蝦皮(an e-commerce platform like eBay)
@kiransabapathy63474 ай бұрын
Can you help me solve the integral (secant ^x (x) dx.
@DaiShuryoTechnus4 ай бұрын
How is y^2 gone?
@monzurrahman83074 ай бұрын
If you continue with the original method: 3) x² = |x|², so |x||sin(xy)|/x² = |sin(xy)|/|x|. Assume y ≠ 0, we can multiply by |y|/|y| and bring the denominator inside to get |y| |sin(xy)/(xy)|, which goes to 0. Finally, if y = 0, then the original expression immediately collapses to 0, as x ≠ 0.
@bprpcalculusbasics4 ай бұрын
Why didn’t I think of that?! Thanks.
@bprpcalculusbasics4 ай бұрын
Check out the 6 ways of evaluating the limit of a multi-variable function: kzbin.info/www/bejne/fHuQoJmGi75ohposi=sn5NrvmLhM-VyVNO
@EmmanuelGiouvanopoulos4 ай бұрын
wait, why paper and no board?
@nvapisces70114 ай бұрын
I would have used |x|
@jackkalver46444 ай бұрын
Multiplying by x^2 was the mistake. Since x≈0, |x||sin(xy)|/x^2>=|x||sin(xy)|.
@Yasser-xl7rt12 күн бұрын
Step number 3
@ymj51614 ай бұрын
最关键的一点还是limx→0, (sinx)/x=1
@rootroot-pi4 ай бұрын
NEW BOARD!!!
@rootroot-pi4 ай бұрын
where is the truck
@sampreetkaur34474 ай бұрын
okay , this is very random , but I wish you could teach me how to differentiate Schrödinger's equation 🥺. I am a high school student and i learn your calculus to solve calculus based physics😭. I WISH YOU COULDDDDDDDDDDDDDDD PWEASESSSSSSSSSS.
@Ken-er9cq4 ай бұрын
Put y=x and then it is easy. That may be not mathematically correct.
@MichaelGrantPhD4 ай бұрын
It's not, but it's a good way to start to make sure you've got a sense of the answer