Finding the unit tangent vector and the unit normal vector

  Рет қаралды 2,714

bprp calculus basics

bprp calculus basics

Күн бұрын

This Calculus 3 tutorial provides an example of finding the unit tangent vector and the unit normal vector. To find the tangential part and the normal part of the acceleration, please see: • Finding the tangential...
-----------------------------
Support this channel and get my calculus notes on Patreon: 👉
/ blackpenredpen
Get the coolest math shirts from my Amazon store 👉 amzn.to/3qBeuw6
-----------------------------
#calculus #bprpcalculus #apcalculus #tutorial #math

Пікірлер: 12
@aryanroy1654
@aryanroy1654 3 ай бұрын
Wow thank you so much. My teacher went over the concept of switching components to get the normal unit vector, but I was so confused on how to know the sign of the components.
@denatyeatsnuggets7274
@denatyeatsnuggets7274 4 ай бұрын
THANK YOU!!! The only examples people like showing are ones where sin and cos squared becomes a constant and then I was so confused if we needed to take derivative of the magnitude too. Thank you so much ❤❤
@ianfowler9340
@ianfowler9340 6 ай бұрын
We know N(t) points toward the centre of curvature - you can see the 3/2 powers showing up. Notice that you can easily flip the componenets of T and make one negative forcing the dot product to be 0 and still maintain unit vector status. Identical result when taking negative reciprocal slopes.
@cdkw2
@cdkw2 6 ай бұрын
You should do a livestream some day!
@coachcarino
@coachcarino Ай бұрын
What if it is 3 Dimensional ?
@kaursingh637
@kaursingh637 26 күн бұрын
SIR EXCELLENT - WHICH UNIVERSITY ? WHICH COUNTRY ? AMARJIT INDIA
@ologhai5750
@ologhai5750 6 ай бұрын
What was the original word problem? Knowing it would make this video tastier.
@dsx0164
@dsx0164 6 ай бұрын
Why this parametric curves are continuous? Maybe not...
@ianfowler9340
@ianfowler9340 6 ай бұрын
For this curve: Let x^3 = 1/3t^3 and y^2 = 1/2t^2 giving us t^3 = 3x^2 and t^2 = 2y^2 a Dividing gives us: t = 3x^3/2y^2 which in turn gives y^2 = 1/2[9x^6/4y^2] = 9x^6/8y^2 Finally y^2 = +/- [3/2sqrt(2)]*x^3 ---- which is continuous everywhere. Even at the cusp (0,0).
@phill3986
@phill3986 6 ай бұрын
👍😎👍
@rootroot-pi
@rootroot-pi 7 ай бұрын
why again
@pedropiata648
@pedropiata648 6 ай бұрын
Why not
Finding the tangential component and the normal component of acceleration
8:00
bprp calculus basics
Рет қаралды 1,9 М.
coco在求救? #小丑 #天使 #shorts
00:29
好人小丑
Рет қаралды 120 МЛН
Cheerleader Transformation That Left Everyone Speechless! #shorts
00:27
Fabiosa Best Lifehacks
Рет қаралды 16 МЛН
Torsion: How curves twist in space, and the TNB or Frenet Frame
10:48
Dr. Trefor Bazett
Рет қаралды 158 М.
3D Curves and their Tangents | Intro to Vector-Valued Functions
10:07
Dr. Trefor Bazett
Рет қаралды 116 М.
an interesting limit
12:34
Seegee Aye
Рет қаралды 469
What is curvature? (introduction & definition)
7:29
bprp calculus basics
Рет қаралды 13 М.
8: Tangent and Normal Vectors - Valuable Vector Calculus
7:39
Mu Prime Math
Рет қаралды 35 М.
Deriving the Dirac Equation
16:34
Richard Behiel
Рет қаралды 121 М.
what fractions dream of
15:34
Michael Penn
Рет қаралды 57 М.
Animation vs. Math
14:03
Alan Becker
Рет қаралды 80 МЛН
Formulas you need to know for computing the curvature!
6:50
bprp calculus basics
Рет қаралды 3,9 М.
how Laplace solved the Gaussian integral
15:01
blackpenredpen
Рет қаралды 769 М.