Consider the action of S4 on Z [ x1,x2,x3,x4] given by σ.p(x1,x2,x3,x4) = p( xσ(1), xσ(2), xσ(3), xσ(4) ) for σ belongs to S4.Let H ⊆ S4 denote the cyclic subgroup generated by (1423). Then the cardinality of orbit OH(x1x3+x2x4) of H on the polynomial x1x3 + x2x4 is
@Nainagour-l1h2 күн бұрын
Since H is generated by (1423) the orbit x1x3+x2x4 under the action of H is the set {(1423)^n(x1x2+x2x4):n belong z} Calculate the value of (1423)^4(x2x3+x2x4) for n=0,1,2,3,4 (1423)^0(x1x3+x2x4)=(x1x3+x2x4) (1423)^1(" "")=(x4x1+x3x2) (1423)^2( """)=(x2x4+x1x3) (1423)^3( """")=(x3x2+x4x1) (1423)^4( """)=(x1x3+x2x4) The cardinality of the orbit oH (x1x3+x2x4) of H on the polynomial x1x3+x2x4 is 4 Answer 4
@hrishutiwari49296 сағат бұрын
Let < (0,2) > denote the subgroup generated by (0,2) in Z4×Z8. Then the order of (3,1) +< (0,2) > in the quotient group Z4× Z8 / < (0,2) > is
@hrishutiwari49292 күн бұрын
Sir next lecture mein ye explain kr dijiyega
@Nainagour-l1h2 күн бұрын
Sir homework ka answer option d is correct thank you sir radhe radhe 🙏
@hitendrakumar20702 күн бұрын
Option d will be the absolutely correct answer
@mansigupta96042 күн бұрын
D is the correct answer
@hariomgupta91162 күн бұрын
H.W ka D correct hoga
@as-bj4hq2 күн бұрын
Option d correct
@abhijitdas29762 күн бұрын
8:55 sir our question is G is not mentioned is abelian, cyclic, so kase HK is group