one of the best video on Wiener process in entire youtube space
@Daniel-qt9jnАй бұрын
Very detailed and easy to follow explanation. Thank you.
@avadheshkumar1488 Жыл бұрын
This is the best and most lucid explanation I have ever seen. Thank you very much!!!
@finRGB Жыл бұрын
Glad you found the video helpful, Avadhesh.
@cryk73824 жыл бұрын
This is the best explanation I have ever heard. I had some difficulties in understanding the concepts with my teacher so I was looking for some videos here and your explanations with illustrations are so easy to understand, thank you so much for that.
@finRGB4 жыл бұрын
Thank you for the kind words of appreciation. Glad that the video was helpful.
@dziugaschvoinikov44409 ай бұрын
Intuitive way of understanding why the law of large numbers is talking about mean, and there is nothing that stops us from fluctuating a lot
@Iason_P.2 жыл бұрын
This video was excactly what i was looking for! I cannot thank you enough for explaining to me the Weiner process and especially the part about sqrt(d(t)). Your slides contain as much graphics and informations as needed. Well done!
@finRGB2 жыл бұрын
Thank you for the appreciation, Iason. Glad that you found the video helpful.
@omarfaruk56954 жыл бұрын
I wanted to know why they use sqrt(del_t) as the variance and you explained that very intuitively. Thank you for the upload.
@mathmadedeadsimple3 жыл бұрын
Same! Seems like so many books gloss over this
@SyedMohommadKumailAkbar5 ай бұрын
Excellent video, made the concepts crystal clear. thank you for this
@finRGB5 ай бұрын
Glad you found the video helpful, Syed.
@kushlord21392 жыл бұрын
Greatest lesson I've ever heard on Wiener Processes. Thanks very much!
@chandanadeeksha884 Жыл бұрын
Very intuitively explained what is so abstract and difficult to understand.
@downtown123 Жыл бұрын
Fantastic video. Incredibly helpful and so concise. Thank you very much!
@zwothethothori60585 ай бұрын
Amazing lesson. ❤❤
@sherryyeung33222 жыл бұрын
This is amazing, really clear, impressive
@finRGB2 жыл бұрын
Glad you found the video helpful, Sherry.
@YOLO-rj6ks3 жыл бұрын
please make a video about Ito's lemma as well... and thank you for the video, you made it so easy to understand
@finRGB3 жыл бұрын
Sure, will do. Glad that you found this video helpful.
@Matt_Kumar3 жыл бұрын
@@finRGB Keeping an eye open for the Ito video, thank you!!!
@RubenteWierik4 жыл бұрын
This is such a great explanation! Thanks a lot for sharing your knowledge.
@finRGB4 жыл бұрын
Glad that you found the video helpful, Ruben.
@Tyokok7 ай бұрын
Thanks a lot for the best explain and derivation of the BM! May I ask where is the 2nd part of this topic? That how you convert back from discrete to continuous. Really appreciate it!
@AnandandKanhaKedi2 ай бұрын
Great explanation :)
@Ani4alltube Жыл бұрын
Nicely explained
@shittujamiunigeria12592 жыл бұрын
This is really great.....
@luzianlechner18842 жыл бұрын
perfectly explained thanks
@anindadatta1645 жыл бұрын
superb presentation
@rajeshalladi91912 жыл бұрын
Thank you so much for this video.. very helpful
@viiarush4 жыл бұрын
This is just brilliant. Thank you!
@finRGB4 жыл бұрын
Thank you for the appreciation, viiarush.
@giovanniberardi41343 жыл бұрын
Excellent
@fengjason65832 жыл бұрын
Thanks,very nice!
@eloise96634 жыл бұрын
Thank you so much
@mobileentertainment212 Жыл бұрын
what software do you use? the handwriting is very nice
@krishnavilassreenidhi53533 жыл бұрын
Thank you so much!
@filledmug3 жыл бұрын
Very helpful video. I have one question though: choice of sqrt (t) is motivated by its slow convergence to 0, so it makes sense to use a higher root of (t) say cube-root. What is the reason to not do that ?
@finRGB3 жыл бұрын
Thank you for appreciating the video. The first noteworthy impact of working with cube root of Delta t will be that variance of increment of W won't be an integral power of Delta t.
@charlie3k3 жыл бұрын
Why do we scale epsilon by sqrt(del_t)? I'm curious to understand why the square root is there.
@finRGB3 жыл бұрын
Hello Charlie3k, the logic for sqrt(del_t) is covered from 9:20 onwards. Cheers
@charlie3k3 жыл бұрын
@@finRGB Ah, my apologies for missing that timestamp. Thank you for the fast response and the excellent video! :)
@Speak4Yourself23 жыл бұрын
Thanks a lot!
@suhasakowshik35285 жыл бұрын
Thanks a lot
@YChen-ut1dw4 жыл бұрын
thank you for the video!
@chuamanchin8733 жыл бұрын
thanks!
@hrithikjha11074 жыл бұрын
Thank you for this video. Really understandable. I know you didn't cover this, but are Wiener Processes used in Monte Carlo Simulationsfor finance? Thanks once again.
@finRGB4 жыл бұрын
Thank you for the appreciation for the video, Hrithik. The Wiener process is a very important building block used to model the dynamic (continuous time) evolution of assets or market variables that underlie derivatives contracts. Your first exposure to this process happens when you write down the Geometric Brownian Motion (GBM) assumption that Black Scholes Merton model makes. Monte Carlo simulation is a numerical technique that will indeed make use of the Wiener process if the chosen model assumptions require it to do so.
@sengichin32504 жыл бұрын
I think W_{t_2} - W_{t_1} ~ N(0,t_2 +t_1) (instead of minus), since Var(X-Y) = Var(X) + Var(Y) if X and Y are independent r.v.
@finRGB4 жыл бұрын
Hello Sengi Chin. In this case, W(t2) and W(t1) are not independent. Their covariance is given by cov(W(t1), W(t2)) = min(t1,t2) = t1. To work out the variance of W(t2) - W(t1), it is best to think of this difference to be made up of changes in the process over tiny discrete time invervals (say of length Delta t). Each of these changes is independent, and has variance of Delta t. The variance of the sum of these tiny changes will be the length of the time interval i.e. t2-t1.