Standard Brownian Motion / Wiener Process: An Introduction

  Рет қаралды 39,695

finRGB

finRGB

Күн бұрын

Пікірлер
@toxicpankaj
@toxicpankaj 2 жыл бұрын
one of the best video on Wiener process in entire youtube space
@Daniel-qt9jn
@Daniel-qt9jn Ай бұрын
Very detailed and easy to follow explanation. Thank you.
@avadheshkumar1488
@avadheshkumar1488 Жыл бұрын
This is the best and most lucid explanation I have ever seen. Thank you very much!!!
@finRGB
@finRGB Жыл бұрын
Glad you found the video helpful, Avadhesh.
@cryk7382
@cryk7382 4 жыл бұрын
This is the best explanation I have ever heard. I had some difficulties in understanding the concepts with my teacher so I was looking for some videos here and your explanations with illustrations are so easy to understand, thank you so much for that.
@finRGB
@finRGB 4 жыл бұрын
Thank you for the kind words of appreciation. Glad that the video was helpful.
@dziugaschvoinikov4440
@dziugaschvoinikov4440 9 ай бұрын
Intuitive way of understanding why the law of large numbers is talking about mean, and there is nothing that stops us from fluctuating a lot
@Iason_P.
@Iason_P. 2 жыл бұрын
This video was excactly what i was looking for! I cannot thank you enough for explaining to me the Weiner process and especially the part about sqrt(d(t)). Your slides contain as much graphics and informations as needed. Well done!
@finRGB
@finRGB 2 жыл бұрын
Thank you for the appreciation, Iason. Glad that you found the video helpful.
@omarfaruk5695
@omarfaruk5695 4 жыл бұрын
I wanted to know why they use sqrt(del_t) as the variance and you explained that very intuitively. Thank you for the upload.
@mathmadedeadsimple
@mathmadedeadsimple 3 жыл бұрын
Same! Seems like so many books gloss over this
@SyedMohommadKumailAkbar
@SyedMohommadKumailAkbar 5 ай бұрын
Excellent video, made the concepts crystal clear. thank you for this
@finRGB
@finRGB 5 ай бұрын
Glad you found the video helpful, Syed.
@kushlord2139
@kushlord2139 2 жыл бұрын
Greatest lesson I've ever heard on Wiener Processes. Thanks very much!
@chandanadeeksha884
@chandanadeeksha884 Жыл бұрын
Very intuitively explained what is so abstract and difficult to understand.
@downtown123
@downtown123 Жыл бұрын
Fantastic video. Incredibly helpful and so concise. Thank you very much!
@zwothethothori6058
@zwothethothori6058 5 ай бұрын
Amazing lesson. ❤❤
@sherryyeung3322
@sherryyeung3322 2 жыл бұрын
This is amazing, really clear, impressive
@finRGB
@finRGB 2 жыл бұрын
Glad you found the video helpful, Sherry.
@YOLO-rj6ks
@YOLO-rj6ks 3 жыл бұрын
please make a video about Ito's lemma as well... and thank you for the video, you made it so easy to understand
@finRGB
@finRGB 3 жыл бұрын
Sure, will do. Glad that you found this video helpful.
@Matt_Kumar
@Matt_Kumar 3 жыл бұрын
@@finRGB Keeping an eye open for the Ito video, thank you!!!
@RubenteWierik
@RubenteWierik 4 жыл бұрын
This is such a great explanation! Thanks a lot for sharing your knowledge.
@finRGB
@finRGB 4 жыл бұрын
Glad that you found the video helpful, Ruben.
@Tyokok
@Tyokok 7 ай бұрын
Thanks a lot for the best explain and derivation of the BM! May I ask where is the 2nd part of this topic? That how you convert back from discrete to continuous. Really appreciate it!
@AnandandKanhaKedi
@AnandandKanhaKedi 2 ай бұрын
Great explanation :)
@Ani4alltube
@Ani4alltube Жыл бұрын
Nicely explained
@shittujamiunigeria1259
@shittujamiunigeria1259 2 жыл бұрын
This is really great.....
@luzianlechner1884
@luzianlechner1884 2 жыл бұрын
perfectly explained thanks
@anindadatta164
@anindadatta164 5 жыл бұрын
superb presentation
@rajeshalladi9191
@rajeshalladi9191 2 жыл бұрын
Thank you so much for this video.. very helpful
@viiarush
@viiarush 4 жыл бұрын
This is just brilliant. Thank you!
@finRGB
@finRGB 4 жыл бұрын
Thank you for the appreciation, viiarush.
@giovanniberardi4134
@giovanniberardi4134 3 жыл бұрын
Excellent
@fengjason6583
@fengjason6583 2 жыл бұрын
Thanks,very nice!
@eloise9663
@eloise9663 4 жыл бұрын
Thank you so much
@mobileentertainment212
@mobileentertainment212 Жыл бұрын
what software do you use? the handwriting is very nice
@krishnavilassreenidhi5353
@krishnavilassreenidhi5353 3 жыл бұрын
Thank you so much!
@filledmug
@filledmug 3 жыл бұрын
Very helpful video. I have one question though: choice of sqrt (t) is motivated by its slow convergence to 0, so it makes sense to use a higher root of (t) say cube-root. What is the reason to not do that ?
@finRGB
@finRGB 3 жыл бұрын
Thank you for appreciating the video. The first noteworthy impact of working with cube root of Delta t will be that variance of increment of W won't be an integral power of Delta t.
@charlie3k
@charlie3k 3 жыл бұрын
Why do we scale epsilon by sqrt(del_t)? I'm curious to understand why the square root is there.
@finRGB
@finRGB 3 жыл бұрын
Hello Charlie3k, the logic for sqrt(del_t) is covered from 9:20 onwards. Cheers
@charlie3k
@charlie3k 3 жыл бұрын
@@finRGB Ah, my apologies for missing that timestamp. Thank you for the fast response and the excellent video! :)
@Speak4Yourself2
@Speak4Yourself2 3 жыл бұрын
Thanks a lot!
@suhasakowshik3528
@suhasakowshik3528 5 жыл бұрын
Thanks a lot
@YChen-ut1dw
@YChen-ut1dw 4 жыл бұрын
thank you for the video!
@chuamanchin873
@chuamanchin873 3 жыл бұрын
thanks!
@hrithikjha1107
@hrithikjha1107 4 жыл бұрын
Thank you for this video. Really understandable. I know you didn't cover this, but are Wiener Processes used in Monte Carlo Simulationsfor finance? Thanks once again.
@finRGB
@finRGB 4 жыл бұрын
Thank you for the appreciation for the video, Hrithik. The Wiener process is a very important building block used to model the dynamic (continuous time) evolution of assets or market variables that underlie derivatives contracts. Your first exposure to this process happens when you write down the Geometric Brownian Motion (GBM) assumption that Black Scholes Merton model makes. Monte Carlo simulation is a numerical technique that will indeed make use of the Wiener process if the chosen model assumptions require it to do so.
@sengichin3250
@sengichin3250 4 жыл бұрын
I think W_{t_2} - W_{t_1} ~ N(0,t_2 +t_1) (instead of minus), since Var(X-Y) = Var(X) + Var(Y) if X and Y are independent r.v.
@finRGB
@finRGB 4 жыл бұрын
Hello Sengi Chin. In this case, W(t2) and W(t1) are not independent. Their covariance is given by cov(W(t1), W(t2)) = min(t1,t2) = t1. To work out the variance of W(t2) - W(t1), it is best to think of this difference to be made up of changes in the process over tiny discrete time invervals (say of length Delta t). Each of these changes is independent, and has variance of Delta t. The variance of the sum of these tiny changes will be the length of the time interval i.e. t2-t1.
@yb801
@yb801 5 жыл бұрын
😁
@yameteoni-chan6823
@yameteoni-chan6823 4 жыл бұрын
very good explanation, nice and simple thanks
@finRGB
@finRGB 4 жыл бұрын
Thank you for the appreciation, Yamete Oni-chan.
Building Brownian Motion from a Random Walk
28:35
Maths Partner
Рет қаралды 47 М.
СИНИЙ ИНЕЙ УЖЕ ВЫШЕЛ!❄️
01:01
DO$HIK
Рет қаралды 3,3 МЛН
It works #beatbox #tiktok
00:34
BeatboxJCOP
Рет қаралды 41 МЛН
99.9% IMPOSSIBLE
00:24
STORROR
Рет қаралды 31 МЛН
Markov Chains Clearly Explained! Part - 1
9:24
Normalized Nerd
Рет қаралды 1,3 МЛН
Wiener Process - Statistics Perspective
18:38
Dimitri Bianco
Рет қаралды 9 М.
Brownian Motion / Wiener Process Explained
7:13
FinanceAndEconomics
Рет қаралды 44 М.
Itos Lemma Explained
7:01
FinanceAndEconomics
Рет қаралды 36 М.
Brownian Motion Introduction
30:44
Pradnya Ambatipudi
Рет қаралды 9 М.
Geometric Brownian Motion: SDE Motivation and Solution
21:33
quantpie
Рет қаралды 24 М.
5. Stochastic Processes I
1:17:41
MIT OpenCourseWare
Рет қаралды 931 М.