Fluid Mechanics: Topic 10.2 - The material derivative

  Рет қаралды 64,156

CPPMechEngTutorials

CPPMechEngTutorials

Күн бұрын

Пікірлер: 68
@carlosmayorga2779
@carlosmayorga2779 4 жыл бұрын
Thank you professors!!! This explanation was simple the clearest I ever listened to. Incredibly clear!!!
@CPPMechEngTutorials
@CPPMechEngTutorials 4 жыл бұрын
Hooray!!!
@gavilin-u5k
@gavilin-u5k 5 жыл бұрын
This was a perfect recap of the material derivative, thank you.
@CPPMechEngTutorials
@CPPMechEngTutorials 4 жыл бұрын
Thanks
@adhavankadhiravan4132
@adhavankadhiravan4132 5 жыл бұрын
An asset for anyone who wants to learn the fundamentals of Fluid Mechanics.
@CPPMechEngTutorials
@CPPMechEngTutorials 5 жыл бұрын
Thanks!
@mirkodibenedetto3155
@mirkodibenedetto3155 5 жыл бұрын
This is the best explanation of this topic I've ever found
@CPPMechEngTutorials
@CPPMechEngTutorials 5 жыл бұрын
Thanks!
@hamidfortab7769
@hamidfortab7769 6 жыл бұрын
Very good video. However, I do not understand from 0:41 to 1:07. Why dV(A) is equal to dV? At t+dt there will be a new element in the control volume and may have completely new velocity at a completely different direction. Even based on your example the red arrows (velocity vectors of element and control volume) at t+dt is different. Considering the fact that the initial velocity at t is same for element and control volume, so how dV(A) is similar to the dV? Thank you
@MrVitness
@MrVitness 6 жыл бұрын
They are equal as dt approaches zero, which means its basically the same point but in two different reference systems.
@gzitterspiller
@gzitterspiller 4 жыл бұрын
I really liked the video, I am working on a sph simulator (very simple, 2d) and I want to get good intuition around fluid dynamics. One way to get it mathematically is to think it this way (P stands for property) P(x,y,z,t) in eulerian, then attach the vector field which would stand for the particle position in terms of time g(t)=(posx(t),posy(t),posz(t),t) Let D(t)=P(g(t)) and then just apply the chain rule.
@fernandojimenezmotte2024
@fernandojimenezmotte2024 7 ай бұрын
beautiful explained , very didactic and neat even for professionals that are not from mechanical engineering !
@alexanderpetsopoulos715
@alexanderpetsopoulos715 2 жыл бұрын
Phenomenally concise and helpful video, great job.
@mohammadhomsee8640
@mohammadhomsee8640 2 жыл бұрын
There is point that I didn't understand, Why you are putting plus between derivatives at 01:28, Some people say this is chain rule, but i didn't understand how this could be chain rule. Thank you professor for your time
@florianarbes
@florianarbes 4 жыл бұрын
Finally I understood that, thank you! I wish i had seen that video a long time ago...
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@math3mantic
@math3mantic 6 жыл бұрын
Very clear explanation. Really helpful, thank you! I really appreciate your work.
@CPPMechEngTutorials
@CPPMechEngTutorials 6 жыл бұрын
Our pleasure.
@AppVolution
@AppVolution 3 ай бұрын
Amazing video! Thank you so much!
@saddamgillani7608
@saddamgillani7608 5 жыл бұрын
whats the meaning of velocity at the previously occupied location also changes ... what i can understand out of this correct me if i,m wrong is that if the fluid element after moving through space comes to the same location it was at some other time , the velocity isn,t going to the same for the same fluid element
@vusvis
@vusvis Жыл бұрын
Awesome video, just a question on notation: why is the convective term written as "(V dot Nabla)alpha" instead of "V dot Nabla dot alpha"
@CPPMechEngTutorials
@CPPMechEngTutorials Жыл бұрын
The dot product is an operation performed between two vectors (V and nabla). Alpha is not a vector.
@vusvis
@vusvis Жыл бұрын
@@CPPMechEngTutorials Ah that makes sense, thank you for the quick reply!
@waqaskhandev
@waqaskhandev 4 жыл бұрын
would you explain me a little bit of what is Convective term . I didn't full understand it.
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@muhammadajmal7363
@muhammadajmal7363 2 жыл бұрын
Great Job Sir... But we can take grad only of scalar Quantities, like del(T). Then how we take del(V) i,e, V. Del(V)?
@wiskeypint4514
@wiskeypint4514 2 ай бұрын
We took del.v n not delv, which would be the divergence and not the gradient
@ramazanoruc34
@ramazanoruc34 5 жыл бұрын
Very good explanation really appreciate to your work.
@HMotam-dn6by
@HMotam-dn6by 5 жыл бұрын
Thank you very much for this fantastic video!
@nikan4now
@nikan4now 6 жыл бұрын
One question. In the Eulerian description x, y , z are not functions of time are they? So why is dv(eulerian)=dv/dxdxdt and so forth?
@CPPMechEngTutorials
@CPPMechEngTutorials 6 жыл бұрын
V is a function of space and time in the Eulerian point of view, leading to the full derivative expression at 1:10. Then we simply divide by dt. dx/dt refers to how fast a particle would move in the x direction at a given location in the flow field, which we call u.
@nikan4now
@nikan4now 6 жыл бұрын
Thanks, but my question is "x" in the Eulerian description is not a function of "t", is it? So are we differentiating x with respect to t or not? If we did that would be the Lagrangian description, wouldn't it?
@dariodiaz2695
@dariodiaz2695 5 жыл бұрын
@@nikan4now In the Eulerian description you can always write the coordinates as functions of their initial values instead of time, therefore you can write the velocity field in function of space only.
@nikan4now
@nikan4now 5 жыл бұрын
Not sure what you mean by writing coordinates as function of their initial values. What initial values?
@MrAmgadHasan
@MrAmgadHasan 5 жыл бұрын
The temperature differs from one location to another. The fluid picks up the temperatures of the locations it passes by. To calculate the change in temperature of the fluid, we calculate the change in temperatures between the locations which the fluid passes by. To determine the rate of change of the temperature, we multiply by the rate with which the fluid passes by these location, which is the velocity. You can first think about it in 1D. dT(change in fluid temperature)=dx(the change of location) *dT/dx( how much the temperature changes from location to another). dT=dx*dT/dx dT/dt (how fast the temperature of the fluid changes) = dT/dx*dx/dt (how fast the fluid changes location, also called velocity). Hope this helps.
@biaoli7405
@biaoli7405 5 жыл бұрын
very excellent explanation!
@MrAmgadHasan
@MrAmgadHasan 5 жыл бұрын
Isn't the convective term simply the directional derivative along the velocity?
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@TheCaptainCombo
@TheCaptainCombo 4 жыл бұрын
I think now I am starting to understand this topic. Thanks...
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@pro.navalarchitect
@pro.navalarchitect 6 жыл бұрын
Very good explanation, much appreciated.
@ivankolodko937
@ivankolodko937 7 жыл бұрын
Could you please explain why doesn't dx, dy, dz equal 0 while the point where the velocity is measured is fixed?
@ajayjadaun100
@ajayjadaun100 7 жыл бұрын
For time dt which tends to zero we imagine that we moved to next fixed point which has x+dx position but as dx is also very small the new point is approximately the same point.
@iam.cristiano007
@iam.cristiano007 6 жыл бұрын
awesome video very easy to understand.informative gud work.
@davidbarreto6180
@davidbarreto6180 7 жыл бұрын
Amazing explanation
@CPPMechEngTutorials
@CPPMechEngTutorials 7 жыл бұрын
Thanks
@hawraaraheem2449
@hawraaraheem2449 2 жыл бұрын
You describe 3 derivatives with material derivative can you write it here because my native language is Arabic and need to translate these details derivatives please
@OlafvanBuul
@OlafvanBuul 5 жыл бұрын
Thank you! Very concise and clear
@seayellow5834
@seayellow5834 2 жыл бұрын
Damn, finally understand DV/Dt!
@mohammadmohagheghfaghih8313
@mohammadmohagheghfaghih8313 5 жыл бұрын
Well done!
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@annothree7881
@annothree7881 4 жыл бұрын
very clear, helped me a lot, thanks :)
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@Felipx2812
@Felipx2812 6 жыл бұрын
Thank you SO much !!!
@CPPMechEngTutorials
@CPPMechEngTutorials 6 жыл бұрын
You are welcome SO much. :)
@AdiRadoniqi
@AdiRadoniqi 11 ай бұрын
godbless u guys
@CPPMechEngTutorials
@CPPMechEngTutorials 11 ай бұрын
Awww... thanks.
@second_lieutenant
@second_lieutenant 4 жыл бұрын
thank you!
@beoptimistic5853
@beoptimistic5853 4 жыл бұрын
kzbin.info/www/bejne/joGmmHqKbqefqLM 👍💐
@xamoralx
@xamoralx 5 жыл бұрын
охуенное объяснение, большое спасибо!
@krishnasai928
@krishnasai928 6 жыл бұрын
thanks a lot dude
@CPPMechEngTutorials
@CPPMechEngTutorials 6 жыл бұрын
No problem.
@josiahbray6870
@josiahbray6870 6 жыл бұрын
Thanks man!
@CPPMechEngTutorials
@CPPMechEngTutorials 6 жыл бұрын
No problem man!
@Pompowernobs
@Pompowernobs 5 жыл бұрын
perfect
@int16_t
@int16_t 3 жыл бұрын
Another known name is "The big D"
@muhammadmubashir2956
@muhammadmubashir2956 Ай бұрын
Video quality is poor
@focusonbasics3066
@focusonbasics3066 2 жыл бұрын
Great explanation
Fluid Mechanics: Topic 10.3 - Steamlines, streaklines, and pathlines
3:06
CPPMechEngTutorials
Рет қаралды 106 М.
The Material Derivative | Fluid Mechanics
11:14
Faculty of Khan
Рет қаралды 31 М.
Леон киллер и Оля Полякова 😹
00:42
Канал Смеха
Рет қаралды 4,7 МЛН
The evil clown plays a prank on the angel
00:39
超人夫妇
Рет қаралды 53 МЛН
Understanding Bernoulli's Equation
13:44
The Efficient Engineer
Рет қаралды 3,5 МЛН
Fluid Mechanics: Topic 10.1 -  Lagrangian vs Eulerian descriptions of flow
5:17
Material derivative
9:07
Brian Storey
Рет қаралды 35 М.
Fluid Mechanics Lesson 04A: The Material Derivative
12:26
John Cimbala
Рет қаралды 11 М.
your Calculus teacher lied* to you
18:26
Michael Penn
Рет қаралды 57 М.
Material or Substantial Derivative
19:07
PANKAJ DUMKA
Рет қаралды 7 М.
Material derivative [Fluid Mechanics #3a]
7:16
Prof. Van Buren
Рет қаралды 6 М.
How The Polio Vaccine Destroyed Trust In Healthcare
16:26
Doctor Mike
Рет қаралды 1,5 МЛН