Fractal Derivative

  Рет қаралды 21,213

Dr Peyam

Dr Peyam

Күн бұрын

Пікірлер: 78
@NoNTr1v1aL
@NoNTr1v1aL 5 жыл бұрын
That's the best clickbait I've ever seen!
@drpeyam
@drpeyam 5 жыл бұрын
Haha, the funny thing is that I didn’t even intend this to be clickbait 😂
@foreachepsilon
@foreachepsilon 5 жыл бұрын
We do this in statistics with the derivative of variance. It's the fractal derivative of the standard deviation with alpha = 2.
@PeterBarnes2
@PeterBarnes2 5 жыл бұрын
I've been obsessing over this obscure derivative stuff, and I wanted to find a continuous form of the general Leibniz Rule (higher-order product rule), so that we can do fractional derivatives of products of functions. A while ago I made a comment on what I've been calling the 'Taylor Transform,' defined: T[f(x)](z) = [d^z/dx^z](x=0) / Gamma(z+1), Which gives that, for 'friendly' functions f: f(x)= {series, n=0 to inf. of} ( T[f(x)](n) ) * x^n Preface: I don't know much about convolutions, but it'd be nice if the continuous convolution definitely converged to the discrete convolution, which seems plausible, though here I assume it doesn't, so I use discrete convolution. Continuous convolution would simplify the problem completely. If we could describe the Taylor Transform of f(x)*g(x), we'd have the continuous Leibniz Rule. Conveniently, you can use the Cauchy Product to get: f(x)*g(x) = {series, n=0 to inf. of} c_n * x^n where c_n = {sum, k=0 to n of} ( T[f(x)](k) * T[g(x)](n-k) ) And, clearly c_n = T[f(x)*g(x)](n), as well. This is equivalent to the discrete convolution of T[f(x)] and T[g(x)] . The problem is the n. So far, we have a mutilated form of the general Leibniz Rule. It isn't continuous because n is a non-negative integer. What you want to do is find a function X which interpolates the discrete convolution of T[f(x)] and T[g(x)] : X(n) = (T[f(x)] ∗ T[g(x)])[n] for non-trivial X(n). You then know that, for some functions M(n) = 1 and B(n) = 0 for non-negative integers 'n,' T[f(x)*g(x)](z) = M(z)X(z) + B(z) succinctly, T[f(x)*g(x)] = MX + B As for the interpolation, I recommend using Newton Series, which can be formulated pretty simply here. X(z) = Gamma(z+1) * {series, n=0 to inf. of} (a_n) / (n! * Gamma(z-n+1)) where a_n is defined with forward divided differences: a_n = [c_0, ... , c_n] = {sum, j=0 to n of} nCr(n, j) * (-1)^(n-j) * c_j The problem with this interpolation is the convergence. It diverges for real z
@q44444q
@q44444q 5 жыл бұрын
You should post this on the r/math subreddit!
@wiskifrac
@wiskifrac 4 жыл бұрын
Or on math stack exchange
@numoru
@numoru 2 жыл бұрын
Yo Update?
@tarushsharma1404
@tarushsharma1404 5 жыл бұрын
That awkward moment when you are watching Dr. Peyam's videos instead of studying for your class 12th final examinations
@mohammedfarhaan9410
@mohammedfarhaan9410 7 ай бұрын
literally me i got bitsat tmrw morning 💀
@jaikumar848
@jaikumar848 5 жыл бұрын
Dr payam! I like the content but board visibility was not good. :(
@drpeyam
@drpeyam 5 жыл бұрын
Yeah, not sure what happened 😕
@jaikumar848
@jaikumar848 5 жыл бұрын
Dr Peyam please try to use dark markers and different camera angle like u did in previous video.
@nickpeterfy8150
@nickpeterfy8150 3 жыл бұрын
Great video Dr. P! Couple follow-up questions for you: 1.) What does alpha represent? The fractal dimension itself? Or is it related to the Hurst exponent? Or some other interpretation? 2.) Do you have any videos explaining Hausdorff measure? 3.) Where did you get the picture for the video thumbnail? I’ve seen it on Twitter recently so wondering if you found it elsewhere or someone on Twitter took it from you possibly if you made it. Thanks!
@Koisheep
@Koisheep 5 жыл бұрын
1:50 Wouldn't this be like some sort of derivative for \alpha-Hölder continuous maps? which CASUALLY I only heard about in a subject about Sobolev spaces applied to PDEs lmao
@leonardromano1491
@leonardromano1491 5 жыл бұрын
Isn't this trivial? Just apply the chainrule... Since x^a is differentiable you simply get lim(x-x0) {[f(x)-f(x0)]/[x-x0]} * {[x-x0]/[x^a-x0^a]} = f'(x0)/(dx^a/dx) = f'(x0)/[a*x0^(a-1)] so for f = x, a = 1/2 you get 1/(1/2 * x0^-(1/2)) = 2*sqrt(x0) which is the same as from the limit in the video but using standard definitions...
@leonardromano1491
@leonardromano1491 5 жыл бұрын
You can generalise this to arbitrary differentiable functions really. Wanna calculate df/d(cos(x)) why not? This is really just trivial. For any differentiable functions f and g (g' not 0) you can calculate df/dg as df/dx * (dg/dx)⁻¹ using the chain rule really^^
@drpeyam
@drpeyam 5 жыл бұрын
Yep, that’s the point!
@firemaniac100
@firemaniac100 5 жыл бұрын
if f is differentiable you are right, however there is the possibility of f not being differentiable and the limit for the fractal derivative exists, i.e. f is fractal differentiable but not differentiable.
@drpeyam
@drpeyam 5 жыл бұрын
Yeah, like sqrt(x), not differentiable at 0, but half-differentiable at 0
@אוריקאופמן-ו8ו
@אוריקאופמן-ו8ו 5 жыл бұрын
How is fractional derivative different from fractal derivative?
@md2perpe
@md2perpe 5 жыл бұрын
I first thought that dt^\alpha should be interpreted as (dt)^\alpha and was therefore surprised to see t^\alpha - t_0^\alpha in the denominator. Then, when you wrote d\sqrt{t} it was obvious that dt^\alpha should be interpreted as d(t^\alpha). Then t^\alpha - t_0^\alpha is natural.
@elfourier1569
@elfourier1569 5 жыл бұрын
Does exist the fractal integral?
@newtonnewtonnewton1587
@newtonnewtonnewton1587 5 жыл бұрын
Very nice i am fond of calculus
@schlega2
@schlega2 4 жыл бұрын
This got me thinking about a Mandelbrot derivative: f_[n+1]=(f_n)'' + f_0 That didn't seem to lead anywhere interesting, so I tried antiderivatives instead (integrate from 0 to x twice then add the original function). Using Mf for the Mandelbrot antiderivative of f: M1 = cosh(x) Mx = sinh(x) Mexp(x) gives an infinite sum that converges everywhere but I can't find a closed form for it.
@rainbowbloom575
@rainbowbloom575 4 жыл бұрын
Matrix derivative of a function! (d^A)(f(x))/(dx^A)
@8dolev
@8dolev 5 жыл бұрын
2:02 Like a boss!
@aliwaqas2396
@aliwaqas2396 5 жыл бұрын
I i want you to suggest two books one for ODE'S and one for PDE'S , i am interested in the theory , the ( concept ) . I hope you will suggest a master piece , a book for the life time , thanks ! and i have some questions which i wanted to be solved so how i can send you those .
@drpeyam
@drpeyam 5 жыл бұрын
ODE: Hirsch Smale Devaney PDE: Evans
@aliwaqas2396
@aliwaqas2396 5 жыл бұрын
Dr Peyam many thanks e^+infinity 🙂
@frolomaskor
@frolomaskor 3 жыл бұрын
This video made my day! 👍
@helloitsme7553
@helloitsme7553 5 жыл бұрын
df/dx^α = (df/dx) / (dx^α/dx). This is the way to calculate it without the limit things, basically the Chen lu
@drpeyam
@drpeyam 5 жыл бұрын
Except that sometimes df/dx might not exist whereas df/dx^alpha might exist
@telotawa
@telotawa 5 жыл бұрын
it feels like you're doing a substitution, like df / d t^a is like you're doing x = t^a and then df/dx? then reversing the substitution to get back to t?
@drpeyam
@drpeyam 5 жыл бұрын
Yeah, basically
@tylershepard4269
@tylershepard4269 5 жыл бұрын
Could this also be done using the chain rule?
@drpeyam
@drpeyam 5 жыл бұрын
Yes IF f is differentiable! But in general this is more general
@soar8nalra
@soar8nalra 5 жыл бұрын
Why dont you just use chain rule?
@shiina_mahiru_9067
@shiina_mahiru_9067 5 жыл бұрын
Ummm... how about fractal integral
@drpeyam
@drpeyam 5 жыл бұрын
Interesting idea! Maybe it’s the Stieltjes integral?
@polaris_babylon
@polaris_babylon 5 жыл бұрын
The derivation is such a wide subject Btw, does all the derivatives have integrals?
@willnewman9783
@willnewman9783 5 жыл бұрын
Nope, not really. You can define derivatives in many many more contexts, most of them not having integrals
@polaris_babylon
@polaris_babylon 5 жыл бұрын
@@willnewman9783 Ok
@gamedepths4792
@gamedepths4792 5 жыл бұрын
The Factual Derivative
@shkotariq6138
@shkotariq6138 5 жыл бұрын
please make the camera angle better
@drpeyam
@drpeyam 5 жыл бұрын
Yeah
@alinajmaldin
@alinajmaldin 5 жыл бұрын
Ur the best!
@Flanlaina
@Flanlaina 4 жыл бұрын
Fractal calculus?
@aatifali845
@aatifali845 5 жыл бұрын
sir upload more video regarding fractal fractional
@yangchen1466
@yangchen1466 4 жыл бұрын
Thank you. Really interesting.
@johnsalkeld1088
@johnsalkeld1088 5 жыл бұрын
Could be interesting to have an alpha and beta as a function of x and see what this derivation looks like
@SlipperyTeeth
@SlipperyTeeth 5 жыл бұрын
So, f'(x)/(ax^(a-1))?
@Patrickoliveirajf
@Patrickoliveirajf 5 жыл бұрын
indeed
@drpeyam
@drpeyam 5 жыл бұрын
Unless f is not differentiable
@rafaellisboa8493
@rafaellisboa8493 5 жыл бұрын
I don't get what this has to do with fractals like mandelbrot set
@drpeyam
@drpeyam 5 жыл бұрын
Fractals have a noninteger dimension and those derivatives are noninteger derivatives. It kind of has to do with Hausdorff measure
@marouaniAymen
@marouaniAymen 5 жыл бұрын
So I guess we can have fractal anti derivative.
@harikishan5690
@harikishan5690 5 жыл бұрын
nicee ,poor marker tho😂
@ericthegreat7805
@ericthegreat7805 5 жыл бұрын
So in other words df(t)/dg(t) = dg(f(t))/df(t). This is where the fractal comes in :o
@wooyoungkim2925
@wooyoungkim2925 5 жыл бұрын
프랙셔날 데리~버~띠~브.. !!
@jamesshelton3827
@jamesshelton3827 2 жыл бұрын
oh shit indeed dr peyam o.o
@jamesshelton3827
@jamesshelton3827 2 жыл бұрын
you must offer the math demon a donut if you wish forbidden lore this exchange will require sprinkles o.o
@jamesshelton3827
@jamesshelton3827 2 жыл бұрын
because thinking of the torus is always giving someone a donut dr peyam o.o
@jamesshelton3827
@jamesshelton3827 2 жыл бұрын
you wanted that torus to have sprinkles dr peyam o.O
@jamesshelton3827
@jamesshelton3827 2 жыл бұрын
everyone does o.o down and to the left now
@ashsharif2453
@ashsharif2453 4 жыл бұрын
Dr please don’t be aggressive with the markers😅 it’s your weapon
@tszhanglau5747
@tszhanglau5747 5 жыл бұрын
You changed your profile pic!
@drpeyam
@drpeyam 5 жыл бұрын
I did! :)
@mauricepanero
@mauricepanero 5 жыл бұрын
Completely lost me. Could you enlarge on this a bit?
@drpeyam
@drpeyam 5 жыл бұрын
It’s just like a derivative, except instead of doing your usual x-a think on the denominator, you replace it with x^alpha - a^alpha
@alexanderseton
@alexanderseton 5 жыл бұрын
I can barely see what you draw!! Cool video, though
@sandorszabo2470
@sandorszabo2470 4 жыл бұрын
Wikipedia isn't crazy 😊
@dgrandlapinblanc
@dgrandlapinblanc 5 жыл бұрын
Not easy but thanks.
@alinajmaldin
@alinajmaldin 5 жыл бұрын
Idgi🤨
@ammaeaar
@ammaeaar 5 жыл бұрын
WHY ARE YOU SCREAMING?
@romajimamulo
@romajimamulo 5 жыл бұрын
Probably because his microphone is off to the side
Half Dimension
22:47
Dr Peyam
Рет қаралды 7 М.
What Lies Between a Function and Its Derivative? | Fractional Calculus
25:27
My scorpion was taken away from me 😢
00:55
TyphoonFast 5
Рет қаралды 2,7 МЛН
Exponential derivative
25:53
Dr Peyam
Рет қаралды 43 М.
Ramanujan wins again!!
9:13
Dr Peyam
Рет қаралды 8 М.
Imaginary derivative of x
22:48
Dr Peyam
Рет қаралды 106 М.
Chaos Equations - Simple Mathematical Art
5:29
CodeParade
Рет қаралды 541 М.
Half derivative of cos x
19:42
Dr Peyam
Рет қаралды 41 М.
Half Derivative of x
20:06
Dr Peyam
Рет қаралды 148 М.
The derivative isn't what you think it is.
9:45
Aleph 0
Рет қаралды 711 М.