Haha, the funny thing is that I didn’t even intend this to be clickbait 😂
@foreachepsilon5 жыл бұрын
We do this in statistics with the derivative of variance. It's the fractal derivative of the standard deviation with alpha = 2.
@PeterBarnes25 жыл бұрын
I've been obsessing over this obscure derivative stuff, and I wanted to find a continuous form of the general Leibniz Rule (higher-order product rule), so that we can do fractional derivatives of products of functions. A while ago I made a comment on what I've been calling the 'Taylor Transform,' defined: T[f(x)](z) = [d^z/dx^z](x=0) / Gamma(z+1), Which gives that, for 'friendly' functions f: f(x)= {series, n=0 to inf. of} ( T[f(x)](n) ) * x^n Preface: I don't know much about convolutions, but it'd be nice if the continuous convolution definitely converged to the discrete convolution, which seems plausible, though here I assume it doesn't, so I use discrete convolution. Continuous convolution would simplify the problem completely. If we could describe the Taylor Transform of f(x)*g(x), we'd have the continuous Leibniz Rule. Conveniently, you can use the Cauchy Product to get: f(x)*g(x) = {series, n=0 to inf. of} c_n * x^n where c_n = {sum, k=0 to n of} ( T[f(x)](k) * T[g(x)](n-k) ) And, clearly c_n = T[f(x)*g(x)](n), as well. This is equivalent to the discrete convolution of T[f(x)] and T[g(x)] . The problem is the n. So far, we have a mutilated form of the general Leibniz Rule. It isn't continuous because n is a non-negative integer. What you want to do is find a function X which interpolates the discrete convolution of T[f(x)] and T[g(x)] : X(n) = (T[f(x)] ∗ T[g(x)])[n] for non-trivial X(n). You then know that, for some functions M(n) = 1 and B(n) = 0 for non-negative integers 'n,' T[f(x)*g(x)](z) = M(z)X(z) + B(z) succinctly, T[f(x)*g(x)] = MX + B As for the interpolation, I recommend using Newton Series, which can be formulated pretty simply here. X(z) = Gamma(z+1) * {series, n=0 to inf. of} (a_n) / (n! * Gamma(z-n+1)) where a_n is defined with forward divided differences: a_n = [c_0, ... , c_n] = {sum, j=0 to n of} nCr(n, j) * (-1)^(n-j) * c_j The problem with this interpolation is the convergence. It diverges for real z
@q44444q5 жыл бұрын
You should post this on the r/math subreddit!
@wiskifrac4 жыл бұрын
Or on math stack exchange
@numoru2 жыл бұрын
Yo Update?
@tarushsharma14045 жыл бұрын
That awkward moment when you are watching Dr. Peyam's videos instead of studying for your class 12th final examinations
@mohammedfarhaan94107 ай бұрын
literally me i got bitsat tmrw morning 💀
@jaikumar8485 жыл бұрын
Dr payam! I like the content but board visibility was not good. :(
@drpeyam5 жыл бұрын
Yeah, not sure what happened 😕
@jaikumar8485 жыл бұрын
Dr Peyam please try to use dark markers and different camera angle like u did in previous video.
@nickpeterfy81503 жыл бұрын
Great video Dr. P! Couple follow-up questions for you: 1.) What does alpha represent? The fractal dimension itself? Or is it related to the Hurst exponent? Or some other interpretation? 2.) Do you have any videos explaining Hausdorff measure? 3.) Where did you get the picture for the video thumbnail? I’ve seen it on Twitter recently so wondering if you found it elsewhere or someone on Twitter took it from you possibly if you made it. Thanks!
@Koisheep5 жыл бұрын
1:50 Wouldn't this be like some sort of derivative for \alpha-Hölder continuous maps? which CASUALLY I only heard about in a subject about Sobolev spaces applied to PDEs lmao
@leonardromano14915 жыл бұрын
Isn't this trivial? Just apply the chainrule... Since x^a is differentiable you simply get lim(x-x0) {[f(x)-f(x0)]/[x-x0]} * {[x-x0]/[x^a-x0^a]} = f'(x0)/(dx^a/dx) = f'(x0)/[a*x0^(a-1)] so for f = x, a = 1/2 you get 1/(1/2 * x0^-(1/2)) = 2*sqrt(x0) which is the same as from the limit in the video but using standard definitions...
@leonardromano14915 жыл бұрын
You can generalise this to arbitrary differentiable functions really. Wanna calculate df/d(cos(x)) why not? This is really just trivial. For any differentiable functions f and g (g' not 0) you can calculate df/dg as df/dx * (dg/dx)⁻¹ using the chain rule really^^
@drpeyam5 жыл бұрын
Yep, that’s the point!
@firemaniac1005 жыл бұрын
if f is differentiable you are right, however there is the possibility of f not being differentiable and the limit for the fractal derivative exists, i.e. f is fractal differentiable but not differentiable.
@drpeyam5 жыл бұрын
Yeah, like sqrt(x), not differentiable at 0, but half-differentiable at 0
@אוריקאופמן-ו8ו5 жыл бұрын
How is fractional derivative different from fractal derivative?
@md2perpe5 жыл бұрын
I first thought that dt^\alpha should be interpreted as (dt)^\alpha and was therefore surprised to see t^\alpha - t_0^\alpha in the denominator. Then, when you wrote d\sqrt{t} it was obvious that dt^\alpha should be interpreted as d(t^\alpha). Then t^\alpha - t_0^\alpha is natural.
@elfourier15695 жыл бұрын
Does exist the fractal integral?
@newtonnewtonnewton15875 жыл бұрын
Very nice i am fond of calculus
@schlega24 жыл бұрын
This got me thinking about a Mandelbrot derivative: f_[n+1]=(f_n)'' + f_0 That didn't seem to lead anywhere interesting, so I tried antiderivatives instead (integrate from 0 to x twice then add the original function). Using Mf for the Mandelbrot antiderivative of f: M1 = cosh(x) Mx = sinh(x) Mexp(x) gives an infinite sum that converges everywhere but I can't find a closed form for it.
@rainbowbloom5754 жыл бұрын
Matrix derivative of a function! (d^A)(f(x))/(dx^A)
@8dolev5 жыл бұрын
2:02 Like a boss!
@aliwaqas23965 жыл бұрын
I i want you to suggest two books one for ODE'S and one for PDE'S , i am interested in the theory , the ( concept ) . I hope you will suggest a master piece , a book for the life time , thanks ! and i have some questions which i wanted to be solved so how i can send you those .
@drpeyam5 жыл бұрын
ODE: Hirsch Smale Devaney PDE: Evans
@aliwaqas23965 жыл бұрын
Dr Peyam many thanks e^+infinity 🙂
@frolomaskor3 жыл бұрын
This video made my day! 👍
@helloitsme75535 жыл бұрын
df/dx^α = (df/dx) / (dx^α/dx). This is the way to calculate it without the limit things, basically the Chen lu
@drpeyam5 жыл бұрын
Except that sometimes df/dx might not exist whereas df/dx^alpha might exist
@telotawa5 жыл бұрын
it feels like you're doing a substitution, like df / d t^a is like you're doing x = t^a and then df/dx? then reversing the substitution to get back to t?
@drpeyam5 жыл бұрын
Yeah, basically
@tylershepard42695 жыл бұрын
Could this also be done using the chain rule?
@drpeyam5 жыл бұрын
Yes IF f is differentiable! But in general this is more general
@soar8nalra5 жыл бұрын
Why dont you just use chain rule?
@shiina_mahiru_90675 жыл бұрын
Ummm... how about fractal integral
@drpeyam5 жыл бұрын
Interesting idea! Maybe it’s the Stieltjes integral?
@polaris_babylon5 жыл бұрын
The derivation is such a wide subject Btw, does all the derivatives have integrals?
@willnewman97835 жыл бұрын
Nope, not really. You can define derivatives in many many more contexts, most of them not having integrals
@polaris_babylon5 жыл бұрын
@@willnewman9783 Ok
@gamedepths47925 жыл бұрын
The Factual Derivative
@shkotariq61385 жыл бұрын
please make the camera angle better
@drpeyam5 жыл бұрын
Yeah
@alinajmaldin5 жыл бұрын
Ur the best!
@Flanlaina4 жыл бұрын
Fractal calculus?
@aatifali8455 жыл бұрын
sir upload more video regarding fractal fractional
@yangchen14664 жыл бұрын
Thank you. Really interesting.
@johnsalkeld10885 жыл бұрын
Could be interesting to have an alpha and beta as a function of x and see what this derivation looks like
@SlipperyTeeth5 жыл бұрын
So, f'(x)/(ax^(a-1))?
@Patrickoliveirajf5 жыл бұрын
indeed
@drpeyam5 жыл бұрын
Unless f is not differentiable
@rafaellisboa84935 жыл бұрын
I don't get what this has to do with fractals like mandelbrot set
@drpeyam5 жыл бұрын
Fractals have a noninteger dimension and those derivatives are noninteger derivatives. It kind of has to do with Hausdorff measure
@marouaniAymen5 жыл бұрын
So I guess we can have fractal anti derivative.
@harikishan56905 жыл бұрын
nicee ,poor marker tho😂
@ericthegreat78055 жыл бұрын
So in other words df(t)/dg(t) = dg(f(t))/df(t). This is where the fractal comes in :o
@wooyoungkim29255 жыл бұрын
프랙셔날 데리~버~띠~브.. !!
@jamesshelton38272 жыл бұрын
oh shit indeed dr peyam o.o
@jamesshelton38272 жыл бұрын
you must offer the math demon a donut if you wish forbidden lore this exchange will require sprinkles o.o
@jamesshelton38272 жыл бұрын
because thinking of the torus is always giving someone a donut dr peyam o.o
@jamesshelton38272 жыл бұрын
you wanted that torus to have sprinkles dr peyam o.O
@jamesshelton38272 жыл бұрын
everyone does o.o down and to the left now
@ashsharif24534 жыл бұрын
Dr please don’t be aggressive with the markers😅 it’s your weapon
@tszhanglau57475 жыл бұрын
You changed your profile pic!
@drpeyam5 жыл бұрын
I did! :)
@mauricepanero5 жыл бұрын
Completely lost me. Could you enlarge on this a bit?
@drpeyam5 жыл бұрын
It’s just like a derivative, except instead of doing your usual x-a think on the denominator, you replace it with x^alpha - a^alpha
@alexanderseton5 жыл бұрын
I can barely see what you draw!! Cool video, though
@sandorszabo24704 жыл бұрын
Wikipedia isn't crazy 😊
@dgrandlapinblanc5 жыл бұрын
Not easy but thanks.
@alinajmaldin5 жыл бұрын
Idgi🤨
@ammaeaar5 жыл бұрын
WHY ARE YOU SCREAMING?
@romajimamulo5 жыл бұрын
Probably because his microphone is off to the side