Fraction with the smallest entries | India National Mathematical Olympiad 2005 Problem 2

  Рет қаралды 19,801

letsthinkcritically

letsthinkcritically

Күн бұрын

Пікірлер: 72
@failsmichael2542
@failsmichael2542 3 жыл бұрын
From the hypothesis we have 197a - 43b >= 1 (1) and 17b - 77a >= 1 (2). An initial bound for a is a >= 1. Using this we can deduce from inequality (2) that b >= 78/17 or b >= 5. From inequality (1) we have a >= (43 * 5 + 1)/197 or a >= 2. We can continue this procedure to "bootstrap" better lower bounds for a and b. The result is shown in the table below iteration || LB for a || LB for b 1 1 5 2 2 10 3 3 14 4 4 19 5 5 23 6 6 28 7 7 32 8 7 32 So we can't do better from iteration 7 onward, i.e we can only conclude that a >= 7 and b >= 32. Luckily, these values work.
@stephenyip5827
@stephenyip5827 3 жыл бұрын
Could you share why 197a-43b>=1,but not 2 or other number?
@MichaelRothwell1
@MichaelRothwell1 3 жыл бұрын
@@stephenyip5827 we know that a/b>43/197 so 197a>43b (since a, b>0), so 197a-43b>0. Since LHS is an integer, we get 197a-43b≥1.
@stephenyip5827
@stephenyip5827 3 жыл бұрын
@@MichaelRothwell1 you are awesome man!
@failsmichael2542
@failsmichael2542 3 жыл бұрын
Another idea: I think the problem has something to do with continued fraction. Note that 43/197 = [0; 4, 1, 1, 2, 1, 1, 3] 17/77 = [0; 4, 1, 1, 8] So to find a fraction in between with minimum denominator we take [0; 4, 1, 1, 3] which yields 7/32. This step needs major justification. :) Unfortunately, I forgot all the relevant theory.
@failsmichael2542
@failsmichael2542 3 жыл бұрын
@@magnusPurblind Well, I have the same rough ideas but writing a fully rigourous solution is annoying because there are two continued fractions associated with a rational so we need to be careful with the inequalities and moreover, yes, we can intuitively see that appending more numbers bloats the denominator but I think to prove this we need to invoke the recurrence for the denominators of the convergents.
@xactxx
@xactxx 2 жыл бұрын
That's the way I worked it out too. The details are here: farrugiamaths.quora.com/What-is-the-fraction-having-the-smallest-numerator-and-denominator-that-rounds-to-the-nearest-given-decimal
@jeanmarcbonici9525
@jeanmarcbonici9525 2 жыл бұрын
@@xactxx Thank you for your advice, I implemented the algorithm in wolfram language and it works on the two examples proposed by letsthinkcritically this one and this other kzbin.info/www/bejne/jKqYdp-uf8SIetU
@prithujsarkar2010
@prithujsarkar2010 3 жыл бұрын
Feels good to see such problems back on this channel :3
@srijanbhowmick9570
@srijanbhowmick9570 3 жыл бұрын
I never knew that you can solve these problems algorithmically ! Thank you :)
@beanhwak
@beanhwak 3 жыл бұрын
Let (5a-b)/(2a-9b) = k we can obtain a/b = (9/2) + (7/2)/(2k-1) then when b is smallest a/b take the largest possible value, so we require k to be the smallest among k = 3, 4, 5, 6, or 7. to maximize (7/2)/(2k-1).
@TIXU-j5u
@TIXU-j5u 4 күн бұрын
Notice min(b)=[77a/17]+1, then [77a/17]+1
@petersievert6830
@petersievert6830 3 жыл бұрын
I mean, 32 is rather small, so it makes sense, we are fine with this number and it seems rather doable to proof, that with a smaller b, there is no solution. But is there an actual proof, this algorithm leads to the minimum solution? I mean, if we had received smth like 25/137 , it seems like being back to square one to proof there is no fraction with smaller b. Am I missing something? Thanks for any answer.
@TheodoreBrown314
@TheodoreBrown314 3 жыл бұрын
As he says at the end, you need to prove it for smaller values afterwards. A bit tedious, but it could be worse
@satyapalsingh4429
@satyapalsingh4429 2 жыл бұрын
Your method of finding minimum value of b is praiseworthy ,dear professor !!! Keep it up!!!
@mathsman5219
@mathsman5219 2 жыл бұрын
I solved it with floor equation, but never thought of this process. AMAZING 👍
@sum2775
@sum2775 3 жыл бұрын
5:24 Why 5a-b/2b-9a has to be an integer? Somebody help me understand😭
@jofx4051
@jofx4051 3 жыл бұрын
I thibk because he has made the conparison to integer so it should be smallest integer, but I think he should explain another way so it doesn't confuse most of us
@ha14mu
@ha14mu 3 жыл бұрын
It doesn't have to be, but picking an integer (the smallest integer) in that gap minimizes the value of b - and we're looking for the fraction with the smallest b
@Epyxoid
@Epyxoid 3 жыл бұрын
That's the instruction of the algorithm. I didn't know this algorithm, but it says "if the numbers (limits) have different integral part, pick the middle term to be the smallest possible integer" For me, it seems like this algorithm is magnifying the scale between the limits to a point where at least one of them is an integer. At that moment you can simply chose the smallest integer for the middle term and calculate the fraction, and maybe if that's not a sufficient solution you can restart with that being the upper limit... Or something like that. Good question btw.
@davidblauyoutube
@davidblauyoutube 3 жыл бұрын
It would help to show that you get the smallest denominator from choosing the smallest possible value of (5a-b)/(2b-9a). If you call this fraction x, so 2 < x < 8, then you can show that a/b = (2x+1)/(9x+5). It is possible that this fraction could reduce, so you need to check GCDs to be sure. As it turns out, the GCD of 2x+1 and 9x+5 is 1, so this fraction never reduces and (a,b) = (2x+1,9x+5) in lowest terms. Now you can reasonably claim that the minimum value of b happens for the minimum value of x, namely x=3 (which was "picked out of thin air" in the video) and thus a=7 and b=32.
@failsmichael2542
@failsmichael2542 3 жыл бұрын
How do you know that x is an integer? If x is not an integer, how can we talk about the gcd of 2x + 1 and 9x + 5?
@jofx4051
@jofx4051 3 жыл бұрын
It should be 3 just because a and b is natural and it is smallest number between 2 and 8
@failsmichael2542
@failsmichael2542 3 жыл бұрын
@@jofx4051 But you implicitly assume that (5a - b)/(2b - 9a) is an integer. Why is it the case?
@sum2775
@sum2775 3 жыл бұрын
@@failsmichael2542 That's exactly what I'm thinking
@failsmichael2542
@failsmichael2542 3 жыл бұрын
@@sum2775 Too much hand-waving. xD
@sarvesh_soni
@sarvesh_soni 3 жыл бұрын
Great Problem
@Blabla0124
@Blabla0124 Жыл бұрын
I am missing a piece. You found a fraction between 43/197 and 17/77. How do you know this has minimum b?
@晓阳-d3p
@晓阳-d3p 3 жыл бұрын
but we need to find the minimum value of b ,not minimum value of (5a-b)/(2b-9a)
@dugong369
@dugong369 2 жыл бұрын
Sort-of proof that b=32 is the minimum: If you go 1 more step (subtract 2, take reciprocals), you get 7/4 > (2b-9a)/(23a-5b) > 1/6. Then set c/d=(2b-9a)/(25a-5b). We see c=d=1 satisfies the original inequality, since 7/4 > 1 > 1/6 (and neither c nor d can be zero). But also we can solve for a/b in terms of c and d: a/b = (2d+5c)/(23c+9d). Any other value for c or d (other than 1) will give a larger value for b. So b=32 is the minimum.
@mathsandsciencechannel
@mathsandsciencechannel 3 жыл бұрын
nice one sir. good content
@ahmedt5734
@ahmedt5734 3 жыл бұрын
Good problem,would you give me the name of the software you’re using to write?
@klausg1843
@klausg1843 2 жыл бұрын
I think we missed why you choose the fraction to be =3. I will try to explain: set (5a-b)/(2b-9a) = n, integer 3
@klausg1843
@klausg1843 2 жыл бұрын
Hi, n does not “have” to be an integer. But as you see in my answer if you suppose n =p/q then the least b >=32. So you get the least b for n= an integer.
@scaudelopusx105
@scaudelopusx105 3 жыл бұрын
The minimum value of b is 32 .
@shreyan1362
@shreyan1362 3 жыл бұрын
Not gonna lie but I was stuck on this type of question and you uploaded a video 😄😊
@vibhanarayan9668
@vibhanarayan9668 3 жыл бұрын
Mee too 🙃🙃🙃😉😉
@hogwarts9879
@hogwarts9879 3 жыл бұрын
Unbelievable things that you given to us
@ethanyap8680
@ethanyap8680 3 жыл бұрын
When I reached 1/8 < (2b-9a)/(5a-b) < 7/18 I did something different. Assuming 5a-b = c for some positive integer c then c/8 < 2b-9a < 7c/18 Observe c = 3 is the minimum such that we can let 2b-9a be an integer (a.k.a. 2b-9a=1) This leads us to solving 2b-9a=1,5a-b=3 => a=7,b=32
@stephenyip5827
@stephenyip5827 3 жыл бұрын
Great video and thanks! It similar to a question that I want to solve ,could you advice any ways to solve? It would be great if you can make a video The problem is ,given a decimal number ,say 0.12345 How do we find a and b to approximate 0.12345 such that the fraction is as close as the decimal number? Obvious a equals 12345 and b equals 100000 will the the exact solution but I want a smaller number of a and b such that I don’t need to remember 2 large number That’s why I will impose a limitation on b ,where b
@failsmichael2542
@failsmichael2542 3 жыл бұрын
Write the number as a continued fraction and take the largest convergent whose denominator is less than the required upper bound.
@stephenyip5827
@stephenyip5827 3 жыл бұрын
@@failsmichael2542 perfectly solve my problem! Thanks👏🏻
@shreyamjha3058
@shreyamjha3058 3 жыл бұрын
Can you suggest some resources to get such problems and which country's math Olympiad problems should I do on Aops?
@Mathcambo
@Mathcambo 3 жыл бұрын
My channel also teaches a lot of math exercises. Give to you every day.
@shreyamjha3058
@shreyamjha3058 3 жыл бұрын
@@Mathcambo I saw them ,but is that content for math Olympiads?
@Mathcambo
@Mathcambo 3 жыл бұрын
Yes
@mcwulf25
@mcwulf25 2 жыл бұрын
If you had gone one step further you would only have 1 as the integer between the two fractions and 32a = 7b.
@beautifulworld6163
@beautifulworld6163 2 жыл бұрын
That was 😻
@Peachu15838
@Peachu15838 3 жыл бұрын
Can anybody please explain why the algorithm works?
@beanhwak
@beanhwak 3 жыл бұрын
YES I CAN, HOPE YOU STILL NEED IT
@ryanjagpal9457
@ryanjagpal9457 3 жыл бұрын
What on earth was he doing with the red writing? I mean why is it b-4a/a and why does the surroundings change
@txikitofandango
@txikitofandango 3 жыл бұрын
he's subtracting all sides by 4. b/a - 4 get a common denominator b/a -4a/a combine the fractions (b-4a)/a
@ryanjagpal9457
@ryanjagpal9457 3 жыл бұрын
@@txikitofandango Why multiply by a?
@ryanjagpal9457
@ryanjagpal9457 3 жыл бұрын
Also the rest of it just confusing i mean, no one is even gonna answer that in an exam
@txikitofandango
@txikitofandango 3 жыл бұрын
@@ryanjagpal9457 How do you add a fraction to a whole number?
@ryanjagpal9457
@ryanjagpal9457 3 жыл бұрын
@@txikitofandango The whole number must have a denominator of 1
@nickcheng2547
@nickcheng2547 3 жыл бұрын
197/43 > b/a > 77/17. 25/43 > (b-4a)/a > 9/17 43/25 < a/(b-4a) < 17/9 18/25 < (5a-b)/(b-4a) < 8/9 25/18 > (b-4a)/(5a-b) > 9/8 7/18 > (2b-9a)/(5a-b) > 1/8 18/7 < (5a-b)/(2b-9a) < 8 let x,y be integers s.t. x=5a-b, y=2b-9a then 18/7 < x/y < 8 and we want to minimize b = 9x+5y Since x/y > 0, and 9x+5y=b>0, x,y are postive. Since x>18y/7, as y increases, x also increases. Therefore y is equal to 1. 18/7 < x < 8, x = 3 min(b) = 9(3)+5(1) = 32 5a-32=3, a=7 It can be checked that 43/197 < 7/32 < 17/77
@mathcanbeeasy
@mathcanbeeasy Жыл бұрын
"Therefore y=1" is incorect. You are lucky here that 32-5*1 is multiple of 9, but in other cases y is not 1. Practically you minimize x, not b with the assumption that y=1. To be more clear, in other case you may have 9*2+5*2 =2818y/7 than y is 1. Proving that b min is 32 is a loooot hard than you think. That's why the prove is not in the video.
@21gamer50
@21gamer50 3 жыл бұрын
Try this take the mean of two numbers and u get the same ans
@TechToppers
@TechToppers 3 жыл бұрын
Might be this is happening due to the bad bounds of the problem... I dunno exactly. Or it might be intended...
@stefanopantaleoni9232
@stefanopantaleoni9232 3 жыл бұрын
If I understood what you meant... the mean value of 43/1997 and 17/77 is 3330/15169 (numerator and denominator already prime to each other). And 15169 > 32.
@ryanjagpal9457
@ryanjagpal9457 3 жыл бұрын
I would’ve said the minimum of b is more than 77 and smaller than 197 so b is basically 77.1
Why is 2^n + 3^n never a perfect cube? | JBMO Shortlist
8:59
letsthinkcritically
Рет қаралды 19 М.
Two Solutions to International Mathematical Olympiad 1986 Problem 1
15:41
letsthinkcritically
Рет қаралды 16 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН
It’s all not real
00:15
V.A. show / Магика
Рет қаралды 20 МЛН
人是不能做到吗?#火影忍者 #家人  #佐助
00:20
火影忍者一家
Рет қаралды 20 МЛН
Loops in a Sequence | International Mathematical Olympiad 2017 Problem 1
18:53
The 7 Levels of Math Symbols
14:03
The Unqualified Tutor
Рет қаралды 36 М.
International Mathematical Olympiad 2017 Problem 2
19:52
letsthinkcritically
Рет қаралды 39 М.
What Actual Aliens Might Look Like
15:53
Kurzgesagt – In a Nutshell
Рет қаралды 3,5 МЛН
When is p^2-p+1 a Cube? | Balkan MO 2005
8:56
letsthinkcritically
Рет қаралды 13 М.
The Algebra Step that EVERYONE Gets WRONG!
17:54
TabletClass Math
Рет қаралды 331 М.
Why You Can't Bring Checkerboards to Math Exams
21:45
Wrath of Math
Рет қаралды 535 М.
To Brawl AND BEYOND!
00:51
Brawl Stars
Рет қаралды 17 МЛН